• Title/Summary/Keyword: FWD Deflection

Search Result 32, Processing Time 0.021 seconds

Back calculation and solution Technique of E-modulus by FWD′s deflection data in Pavement (FWD 처짐치에 의한 포장층 탄성계수 역산 및 해석기법)

  • 위성동
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.188-200
    • /
    • 2002
  • In this study, a pavement evaluation method is introduced by a case study of the measurement data obtained in Incheon International Airport. Based on the results obtained by both visual inspection and automobile inspection equipments, the pavement surface condition is evaluated and used for maintenance and rehabilitation strategy for pavement. In addition, the special attention was given to the back calculation and solution technique of E-modulus by FWD's deflection data in Pavement.

  • PDF

Preliminary Evaluation of Subsurface Cavity and Road Cave-in Potentials Based on FWD Deflections (FWD 처짐량 기반 도로 공동 및 함몰 위험도 평가 기초 연구)

  • Kim, Tae-Woo;Yoon, Jin-Sung;Lee, Chang Min;Baek, Jongeun;Choi, Yeon-Woo
    • International Journal of Highway Engineering
    • /
    • v.19 no.5
    • /
    • pp.59-68
    • /
    • 2017
  • PURPOSES : The objective of this study is to evaluate the potential risk level of road cave-ins due to subsurface cavities based on the deflection basin measured with falling weight deflectometer (FWD) tests. METHODS: Ground penetrating radar (GPR) tests were conducted to detect road cavities. Then FWD tests were conducted on 13 pavement test sections with and without a cavity. FWD deflections and a deflection ratio was used to evaluate the effect of geometry of the cavity and pavement for road cave-in potentials. RESULTS : FWD deflection of cavity sections measured at 60 cm or a closer offset distance to a loading center were 50% greater than more robust sections. The average deflection ratio of the cavity sections to robust sections were 1.78 for high risk level cavities, 1.51 for medium risk level cavities, and 1.16 for low risk level cavities. The relative remaining service life of pavement with a cavity evaluated with an surface curvature index (SCI) was 8.1% for the high level, 21.8% for the medium level, and 89.8% compared to pavement without a cavity. CONCLUSIONS : FWD tests can be applied to detect a subsurface cavity by comparing FWD deflections with and without a cavity measured at 60 cm or a closer offset distance to loading center. In addition, the relative remaining service life of cavity sections based on the SCI can used to evaluate road cave-in potentials.

Nonlinear Subgrade Model-Based Comparison Study between the Static and Dynamic Analyses of FWD Nondestructive Tests (노상의 비선형 모델에 근거한 비파괴 FWD 시험에 있어 정적과 동적 거동의 비교연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.19 no.1
    • /
    • pp.73-80
    • /
    • 2017
  • PURPOSES : This paper presents a comparison study between dynamic and static analyses of falling weight deflectometer (FWD) testing, which is a test used for evaluating layered material stiffness. METHODS: In this study, a forward model, based on nonlinear subgrade models, was developed via finite element analysis using ABAQUS. The subgrade material coefficients from granular and fine-grained soils were used to represent strong and weak subgrade stiffnesses, respectively. Furthermore, the nonlinearity in the analysis of multi-load FWD deflection measured from intact PCC slab was investigated using the deflection data obtained in this study. This pavement has a 14-inch-thick PCC slab over fine-grained soil. RESULTS: From case studies related to the nonlinearity of FWD analysis measured from intact PCC slab, a nonlinear subgrade model-based comparison study between the static and dynamic analyses of nondestructive FWD tests was shown to be effectively performed; this was achieved by investigating the primary difference in pavement responses between the static and dynamic analyses as based on the nonlinearity of soil model as well as the multi-load FWD deflection. CONCLUSIONS : In conclusion, a comparison between dynamic and static FEM analyses was conducted, as based on the FEM analysis performed on various pavement structures, in order to investigate the significance of the differences in pavement responses between the static and dynamic analyses.

A Study on the Estimation of Relative Compaction on the Subgrade using a Portable FWD (소형 FWD를 이용한 노상토의 다짐도 추정에 관한 연구)

  • Kang, Hee-Bog;Kim, Kyo-Jun;Kang, Jin-Tae;Kim, Jong-Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.213-219
    • /
    • 2007
  • This study was intended to estimate of relative compaction on the ground under the load using of portable FWD. The outcome in the wake of the study is highlighted as below. Viewing the variation of dynamic deflection modulus depending on a number of compaction, when a number of compaction increased to 8 (18.3MPa) from 4 (15Mpa), a dynamic deflection modulus increased 27%, and when a number reached to 12 (27.9MPa), it doubled the value indicated in 4. Viewing the relationship between dry density and dynamic deflection modulus in line with the increase in a number of compaction, a number of compaction by the roller reaching to the degree of compaction equivalent to 95% of max dry density was 13, with a dynamic deflection modulus indicating 27MPa ~ 29MPa.

Development of Falling Weight Deflectometer for Evaluation of Layer Properties of Flexible Pavement (도로포장 구조체의 물성 추정을 위한 FWD의 설계 및 제작)

  • 황성호;손웅희;최경락
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.3
    • /
    • pp.124-130
    • /
    • 2003
  • Many structural evaluation procedures of road and airfield pavements use the Falling Weight Deflectometer (FWD) as a critical element of non-destructive deflection testing. FWD is a trailer mounted device that provides accurate data on pavement response to dynamic wheel loads. A dynamic load is generated by dropping a mass from a variable height onto a loading plate. The magnitude of the load and the pavement deflection are measured by a load celt and geophones. And database concerning pavement damage should be enhanced to analyze loss of thickness asphalt layer caused from the plastic deformation of pavement structure, such as cracking or rutting. The prototype FWD is developed, which consists of chassis system, hydraulic loading system, data acquisition and analysis system. This system subsequently merged to from automation management system and is then validated and updated to produce a working FWD which can actually be used in the field.

Investigation of Minimum Number of Drop Levels and Test Points for FWD Network-Level Testing Protocol in Iowa Department of Transportation (아이오와 주 교통국의 FWD 네트워크 레벨 조사 프로토콜을 위한 최소 하중 재하 수와 조사지점 수의 결정)

  • Kim, Yong-Joo;Lee, Ho-Sin(David);Omundson, Jason S.
    • International Journal of Highway Engineering
    • /
    • v.12 no.4
    • /
    • pp.39-46
    • /
    • 2010
  • In 2007, Iowa department of transportation (DOT) initiated to run the falling weight deflectometer (FWD) network-level testing along Iowa highway and road systems and to build a comprehensive database of deflection data and subsequent structural analysis, which are used for detecting pavement structure failure, estimating expected life, and calculating overlay requirements over a desired design life. Iowa's current FWD networklevel testing protocol requires that pavements are tested at three-drop level with 8-deflection basin collected at each drop level. The test point is determined by the length of the tested pavement section. However, the current FWD network-level program could cover about 20% of Iowa's highway and road systems annually. Therefore, the current FWD network-level test protocol should be simplified to test more than 20% of Iowa's highway and road systems for the network-level test annually. The main objective of this research is to investigate if the minimum number of drop levels and test points could be reduced to increase the testing production rate and reduce the cost of testing and traffic control without sacrificing the quality of the FWD data. Based upon the limited FWD network-level test data of eighty-three composite pavement sections, there was no significant difference between the mean values of three different response parameters when the number of drop levels and test points were reduced from the current FWD network-level testing protocol. As a result, the production rate of FWD tests would increase and the cost of testing and traffic control would be decreased without sacrificing the quality of the FWD data.

An Analysis on the Nonlinear Behavior of Block Pavements using Multi-Load Level Falling Weight Deflectometer Testing (다단계 FWD 하중을 이용한 블록포장의 비선형 거동 분석)

  • Park, Hee Mun;Kim, Yeon Tae;Lee, Su Hyung
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.35-40
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to analyze the nonlinear behavior of block pavements using multi-load level falling weight deflectometer (FWD) deflections. METHODS : Recently, block pavements are employed not only in sidewalks, but also in roadways. For the application of block pavements in roadways, the structural capacities of subbase and subgrade are important factors that support the carry traffic load. Multi-load level FWD testing was conducted on block pavements to analyze their nonlinear behavior. The deflection ratio due to the increase in load was analyzed to estimate the nonlinearity of block pavements. Finite element method with nonlinear soil model was applied to simulate the actual nonlinear behavior of the block pavement under different levels of load. RESULTS : The results of the FWD testing show that the center deflections in block pavements are approximately ten times greater than that in asphalt pavements. The deflection ratios of the block pavement due to the increase in the load range from 1.2 to 1.5, indicating that the deflection increased by 20~50%. The material coefficients of the nonlinear soil model were determined by comparing the measured deflections with the predicted deflections using the finite element method. CONCLUSIONS : In this study, the nonlinear behavior of block pavements was reviewed using multi-load level FWD testing. The deflection ratio proposed in this study can estimate the nonlinearity of block pavements. The use of nonlinear soil model in subbase and subgrade increases the accuracy of predicting deflections in finite element method.

A Study on the Relation between Dynamic Deflection Modulus and In-Situ CBR Using a Portable FWD (소형FWD를 이용한 노상토의 동적변형계수와 현장 CBR의 상관 연구)

  • Kang, Hee Bog;Kim, Kyo Jun;Park, Sung Kyoon;Kim, Jong Ryeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.2
    • /
    • pp.149-155
    • /
    • 2008
  • The road construction, as part of effort to ease the worsening traffic, has been underway throughout the nation, while the existing road has been increasingly losing its load carrying capacity due to such factors as heavy traffic and weathering. In the case of site, the soil type, plasticity index, and specific gravity were SC, 12.2%, and 2.66, respectively. The maximum dry density, optimum moisture content and modified CBR were $1.895g/cm^3$ (Modified Compaction D), 13.6%, and 16.2%, respectively. A correlation of coefficient expressed good interrelationship by 0.90 between the CBR estimated from a dynamic penetration index of dynamic cone penetrometer test and a deformation modulus converted from a dynamic deflection modulus obtained from a portable FWD test.

A Development on the Non-Destructive Testing Equipment for the Compaction Control and the Evaluation of Pavements Properties (지반물성추정 및 다짐관리를 위한 비파괴시험장비의 개발)

  • 최준성;김인수;유지형;김수일
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.385-390
    • /
    • 2000
  • In this study, the Non-Destructive Testing Equipment was introduced for the compaction control and the evaluation of pavements properties and the developing process was showed. Falling Weight Deflectometer(FWD) is a system for performing non-destructive testing of pavement and the other foundation structures. The system develops forces from the acceleration caused by the arrest of a falling weight and these forces are transmitted onto the surface of a structure causing it to deflect much as it would due to the weight of a passing wheel load. The structure will bend downward and exhibit a deflection basin. FWD uses a set of velocity sensors to determine the amplitude and shape of the deflection basin. The deflection response, when related to the applied loading, can provide information about the strength and condition of the various elements of the test structure. In this study, a computer program was developed that can be used to evaluate pavement and foundation structures from the data produced by FWD. The Falling Weight Deflectometer, non-destructive testing equipment, is increasing used at the whole world.

  • PDF

Evaluation of Layer Moduli of 4 Layered Flexible Pavement Structures Using FWD (FWD에 의한 4층 아스팔트 포장 구조체의 층별 탄성계수 추정)

  • Kim, Soo Il;Yoo, Ji Hyeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.2
    • /
    • pp.67-78
    • /
    • 1990
  • An inverse self-iterative procedure is developed to determine layer moduli which are significant for the structural evaluation of pavements in developing rational and analytical rehabilitation technique. Falling weight deflectometer(FWD) is adopted as a non-destructive testing(NDT)device. The layer elastic theory is used to interpret NDT data. The theoretical deflection basins of pavement structures obtained by full factorial design are used for a parametric study on the characteristics of deflection basins and regression analyses. Regression equations to estimate layer moduli of flexible pavements are proposed through the regression analyses of theoretical deflection basins. The relationships between the rate of change of moduli and deflections are developed for the efficient iteration. An inverse self-iterative procedure to ensure the accuracy of the layer moduli is proposed. Validity and applicability of the developed procedure are verified through various numerical model tests.

  • PDF