• Title/Summary/Keyword: FW-H 상사법

Search Result 13, Processing Time 0.019 seconds

Turbulent-Induced Noise around a Circular Cylinder using Permeable FW-H Method (Permeable FW-H 방법을 이용한 원형 실린더 주변의 난류유동소음해석)

  • Choi, Woen-Sug;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Jung, Chul-Min
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.6
    • /
    • pp.752-759
    • /
    • 2014
  • Varieties of research on turbulent-induced noise is conducted with combinations of acoustic analogy methods and computational fluid dynamic methods to analyze efficiently and accurately. Application of FW-H acoustic analogy without turbulent noise is the most popular method due to its calculation cost. In this paper, turbulent-induced noise is predicted using RANS turbulence model and permeable FW-H method. For simplicity, noise from 2D cylinder is examined using three different methods, direct method of RANS, FW-H method without turbulent noise and permeable FW-H method which can take into account of turbulent-induced noise. Turbulent noise was well predicted using permeable FW-H method with same computational cost of original FW-H method. Also, ability of permeable FW-H method to predict highly accurate turbulent-induced noise by applying adequate permeable surface is presented. The procedure to predict turbulent-induced noise using permeable FW-H is established and its usability is shown.

Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure (2차원 소나돔 형상 구조물의 난류유동소음 해석)

  • Choi, Yo-Seb;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Choi, Woen-Sug;Jung, Chul-Min
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.39-48
    • /
    • 2016
  • The latest research has shown that the turbulence-induced noise is important in total characteristics of flow noise. Also, turbulence-induced noise have a significant influence for performance of sonar dome. In this paper, Flow analysis is performed on vicinity of the sonar dome model using Large Eddy Simulation method. Also, direct method that extracts perturbational sound pressure, FW-H method without turbulence-induced noise and permeable FW-H method that is able to calculate turbulence- induced noise were compared in order to show turbulence effect.

A Numerical Study on Aerodynamic Noise Characteristics of the Tandem Cylinders using DES and FW-H Acoustic Analogy (DES와 FW-H 음향상사법을 이용한 탠덤 실린더의 공력소음 특성 연구)

  • Kim, Manshik;Lee, Youn Kyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.883-891
    • /
    • 2018
  • In this paper, aerodynamic noise simulation was conducted using DES (Detached Eddy Simulation) and FW-H (Ffowcs Williams and Hawkings) acoustic analogy for the tandem cylinders which have configuration similar to a landing gear of airplanes. Numerical simulation for the tandem cylinders whose centers are 3.7D apart was carried out and results were compared with the measured data such as flow characteristics, pressure coefficients on the cylinder surfaces and far-field noise characteristics. It was confirmed that periodically shedded vortices released at the upstream cylinder and impinged on the downstream cylinder surface are major sources of aerodynamic noise. After verifying the computational method of using DES and FW-H acoustic analogy for predicting aerodynamic noise of tandem cylinders, additional simulation was conducted to examine the effect of attaching a splitter plate at the rear of the upstream cylinder. It was confirmed that the noise level in specific frequency band decreased significantly because the splitter plate changed the vortex shedding features and reduced dipole noise source.

Study on noise prediction by classification of noise sources of a tip-jet driven rotor (팁젯 로터의 소음원 구분을 통한 소음 예측 기법 연구)

  • Ko, Jeongwoo;Kim, Jonghui;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • The noise sources of a tip-jet driven rotor can be separated by rotor blade noise and jet noise. The rotor blade noise consists of thickness noise, loading noise, nonlinear quadrupole noise, and jet noise is divided into nozzle momentum noise and jet radiation noise. The flow analysis for the prediction of rotor blade noise is performed by CFD (Computational Fluid Dynamics) analysis, and the noise source of the rotor blade noise is identified by simultaneously applying the permeable and impermeable surface based FW-H (Ffowcs Williams-Hawkings) acoustic analogy. The nozzle momentum noise is obtained by permeable surface FW-H, and jet radiation noise is predicted by using empirical method for the fixed-wing jet. Both of jet noises use nozzle exit condition for noise analysis. The accuracy of the technique is verified based on the noise measurements of the tip-jet driven rotor, and the unique noise characteristics of the tip-jet driven rotor is confirmed by spectrum analysis.

Flow-Induced Noise Prediction for Submarines (잠수함 형상의 유동소음 해석기법 연구)

  • Yeo, Sang-Jae;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Seol, Hanshin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.7
    • /
    • pp.930-938
    • /
    • 2018
  • Underwater noise radiated from submarines is directly related to the probability of being detected by the sonar of an enemy vessel. Therefore, minimizing the noise of a submarine is essential for improving survival outcomes. For modern submarines, as the speed and size of a submarine increase and noise reduction technology is developed, interest in flow noise around the hull has been increasing. In this study, a noise analysis technique was developed to predict flow noise generated around a submarine shape considering the free surface effect. When a submarine is operated near a free surface, turbulence-induced noise due to the turbulence of the flow and bubble noise from breaking waves arise. First, to analyze the flow around a submarine, VOF-based incompressible two-phase flow analysis was performed to derive flow field data and the shape of the free surface around the submarine. Turbulence-induced noise was analyzed by applying permeable FW-H, which is an acoustic analogy technique. Bubble noise was derived through a noise model for breaking waves based on the turbulent kinetic energy distribution results obtained from the CFD results. The analysis method developed was verified by comparison with experimental results for a submarine model measured in a Large Cavitation Tunnel (LCT).

Study on noise prediction of non-cavitating underwater propeller with hull-appendages effect (선체-부가물 영향을 고려한 비공동 수중추진기의 소음예측 연구)

  • Choi, Jihun;Seol, Hanshin;Park, Ilryong;Lee, Soogab
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 2019
  • In this study, to predict the noise of a submarine propeller which is going to become bigger and faster, the non - cavitating propeller noise was predicted based on the numerical analysis which considering the interaction of the hull - appendages - propeller. In order to predict the radiated noise of the propeller, the flow field for the entire region of hull-appendages-propeller was computed by CFD (Computational Fluid Dynamics). And the noise for the thickness noise and the load noise was numerically predicted using FW-H (Ffwocs Williams-Hawkings) acoustic analogy. Numerical noise prediction results were verified by model tests and showed good agreement with the measurement results in predicting total noise level and low frequency noise.

Blade shape optimization of centrifugal fan for improving performance and reducing aerodynamic noise of clothes dryer (의류 건조기 성능 향상과 공력소음 저감을 위한 원심팬의 날개 형상 최적화)

  • Choi, Jinho;Ryu, Seo-Yoon;Cheong, Cheolung;Kim, Min-kyu;Lee, Kwangho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.3
    • /
    • pp.321-327
    • /
    • 2019
  • The purpose of this study is paper is to improve the flow performance and to reduce the aerodynamic noise of air discharge system consisting of a centrifugal fan, ducts and a housing for the clothes dryer. Using computational fluid dynamics and acoustic analogy based on FW-H (Ffowcs-Williams and Hawkings) Eq., air flow field and acoustic fields of the air discharge system are investigated. To optimize aerodynamic performance and aerodynamic noise, the response surface method is employed. The two factors central composite design using the inflow and outflow angles of fan blades is adopted. The devised optimum design shows the reduction of turbulent kinetic energy in the ducts and the housing of the system, and as a result, the improved flow rate and reduce noise is confirmed. Finally, the experment using the proto-type manufactured usign the optimum design shows the increase of flow rate by 4.2 %.

Aeroacoustic Analysis of UAM Aircraft in Ground Effect for Take-off/Landing on Vertiport (버티포트 이착륙을 고려한 지면 효과를 받는 UAM 항공기에 대한 공력소음 해석 연구)

  • Jin-Yong Yang;Hyeok-Jin Lee;Min-Je Kang;Eunmin Kim;Rho-Shin Myong;Hakjin Lee
    • Journal of Aerospace System Engineering
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2023
  • Urban air mobility (UAM) is being developed as part of the next-generation aircraft, which could be a viable solution to entrenched problems of urban traffic congestion and environmental pollution. A new airport platform called vertiport as a space where UAM can take off and land vertically is also being introduced. Noise regulations for UAM will be strict due to its operation in a highly populated urban area. Ground effects caused by vertiport can directly affect aerodynamic forces and noise characteristics of UAM. In this study, ground effects of vertiport on aerodynamic loads, vorticity field, and far-field noise were analyzed using Lattice-Boltzmann Method (LBM) simulation and Ffowcs Williams and Hawkings (FW-H) acoustic analogy with a permeable surface method.

Prediction of Broadband Noise for Non-cavitation Hydrofoils using Wall-Pressure Spectrum Models (벽면변동압력을 이용한 비공동 수중익의 광대역소음 예측 연구)

  • Choi, Woen-Sug;Jeong, Seung-Jin;Hong, Suk-Yoon;Song, Jee-Hun;Kwon, Hyun-Wung;Kim, Min-Jae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.765-771
    • /
    • 2019
  • With the increase in the speed of ships and the size of ocean structures, the importance of flow noise has become increasingly critical in meeting regulatory standards. However, unlike active investigations in aeroacoustics fields for airplanes and trains, which are based on acoustic analogy methods for tonal and broadband frequency noise, only the discrete blade passing frequency noise from propellers is considered in marine fields. In this study, prediction methods for broadband noise in marine propellers and underwater appendages are investigated using FW-H Formulation1B, which can consider the mechanism of primary noise generation of trailing edge noise. The original FW-H Formulation 1B is based on the pressure correlation function tolackitsgeneralityandaccuracy. To overcome these limitations, wall-pressure spectrum models are adopted to improve the generality in fluid mediums. The comparison of the experimental results obtained in air reveals that the proposed model exhibits a higher accuracy within 5 dB. Furthermore, the prediction procedures for broadband noise for hydrofoils are established, and the estimation of broadband noise is conducted based on the results of the computational fluid dynamics.

Numerical comparative investigation on blade tip vortex cavitation and cavitation noise of underwater propeller with compressible and incompressible flow solvers (압축성과 비압축성 유동해석에 따른 수중 추진기 날개 끝 와류공동과 공동소음에 대한 수치비교 연구)

  • Ha, Junbeom;Ku, Garam;Cho, Junghoon;Cheong, Cheolung;Seol, Hanshin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.4
    • /
    • pp.261-269
    • /
    • 2021
  • Without any validation of the incompressible assumption, most of previous studies on cavitation flow and its noise have utilized numerical methods based on the incompressible Reynolds Average Navier-Stokes (RANS) equations because of advantage of its efficiency. In this study, to investigate the effects of the flow compressibility on the Tip Vortex Cavitation (TVC) flow and noise, both the incompressible and compressible simulations are performed to simulate the TVC flow, and the Ffowcs Williams and Hawkings (FW-H) integral equation is utilized to predict the TVC noise. The DARPA Suboff submarine body with an underwater propeller of a skew angle of 17 degree is targeted to account for the effects of upstream disturbance. The computation domain is set to be same as the test-section of the large cavitation tunnel in Korea Research Institute of Ships and Ocean Engineering to compare the prediction results with the measured ones. To predict the TVC accurately, the Delayed Detached Eddy Simulation (DDES) technique is used in combination with the adaptive grid techniques. The acoustic spectrum obtained using the compressible flow solver shows closer agreement with the measured one.