DOI QR코드

DOI QR Code

Turbulent-Induced Noise around a Circular Cylinder using Permeable FW-H Method

Permeable FW-H 방법을 이용한 원형 실린더 주변의 난류유동소음해석

  • Choi, Woen-Sug (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Kwon, Hyun-Wung (Department of Shipbuilding and Marine Engineering, Koje College) ;
  • Jung, Chul-Min (Advanced Naval Technology Center, NSRDI, Agency for Defense Development)
  • 최원석 (서울대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 송지훈 (전남대학교 조선해양공학전공) ;
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 정철민 (국방과학연구소 국방해양기술센터)
  • Received : 2014.09.26
  • Accepted : 2014.12.26
  • Published : 2014.12.31

Abstract

Varieties of research on turbulent-induced noise is conducted with combinations of acoustic analogy methods and computational fluid dynamic methods to analyze efficiently and accurately. Application of FW-H acoustic analogy without turbulent noise is the most popular method due to its calculation cost. In this paper, turbulent-induced noise is predicted using RANS turbulence model and permeable FW-H method. For simplicity, noise from 2D cylinder is examined using three different methods, direct method of RANS, FW-H method without turbulent noise and permeable FW-H method which can take into account of turbulent-induced noise. Turbulent noise was well predicted using permeable FW-H method with same computational cost of original FW-H method. Also, ability of permeable FW-H method to predict highly accurate turbulent-induced noise by applying adequate permeable surface is presented. The procedure to predict turbulent-induced noise using permeable FW-H is established and its usability is shown.

난류유동에 의한 소음은 계산비용의 관점에서 음향 상사법을 이용하여 전산유체 기법과 결합해 다양한 해석모델이 연구되고 있다. FW-H 음향상사법을 이용한 유동소음해석의 연구가 활발히 이루어지고 있으나, 기존 문헌들의 결과에서는 계산비용의 관점에서 난류유동에 의한 소음성분을 생략하고 있다. 그러나, 최근의 연구에서 유동소음특성에 있어 난류소음의 중요성이 밝혀진바 있다. 본 논문에서는 RANS 난류모델과 투과성 경계면을 이용한 Permeable FW-H 음향상사법을 이용한 난류유동소음해석에 대해 연구하였다. 2D실린더에 대하여 직접적으로 변동압력을 추출하는 직접법과 난류성분을 고려하지 않은 FW-H 상사법, 또 난류소음의 성분을 포함하는 Permeable FW-H 방법의 경우를 비교하였다. Permeable FW-H 방법을 통해 일반적으로 적용되는 FW-H 방법에서 해석 불가능한 난류에 의한 소음의 영향을 기존의 FW-H 방법과 동일한 계산비용으로 예측할 수 있었고, 적절한 투과성 경계면 설정을 통해 높은 정확도의 해석이 가능했다. Permeable FW-H 방법을 통한 난류유동해석 절차를 확립하였으며, 그 유용성을 확인했다.

Keywords

References

  1. Ansys(2009), Ansys Fluent 12.0 Theory Guide Chapter 14. Aerodynamically Generated Noise, pp. 421-432.
  2. Curle, N.(1955), The influence of solid boundaries upon aerodynamic sound, Proceedings of the Royal Society of London, Series A, Mathmatical and Physical Science, Vol. 505, pp. 505-514.
  3. Farassat, F.(2007), Derivation of Formulations 1 and 1A of Farassat, NASA/TM-2007-214853.
  4. Farassat, F. and K. S. Brentner(1988), Supersonic Quadrupole Noise Theory for High-speed Helicopter Roters, Journal of Sound and Vibration, Vol. 218, No. 3, pp. 481-500.
  5. Ffowcs Williams, J. E. and D. L. Hawkings(1969), Sound generation by turbulence and surfaces in arbitrary motion, Philosophical Transactions of the Royal Society of London A, Vol. 264, No. 1151, pp. 321-342. https://doi.org/10.1098/rsta.1969.0031
  6. Hong, H. B. and J. S. Choi(1998), Experimental Study on the Vortex-Shedding Sound from a Yawed Circular Cylinder, Journal of the Acoustical Society of America, Vol. 103, No. 5, pp. 1937-38.
  7. Ianiello, S., R. Muscari and A. Di Mascio(2014), Ship underwater noise assessment by the acoustic analogy, part II: hydroacoustic analysis of a ship scaled model, Journal of Marine Science and Technology, Vol. 3, No. 1, pp. 52-74.
  8. Inoue, O. and N. Hatakeyama(2002), Sound generation by a two-dimensional circular cylinder in a uniform flow, Journal of Fluid Mechanics, Vol. 471, pp. 285-314.
  9. Kim, H. Y., M. C. Jo, S. Y. Kim., H. C. Lee, G. W. Lee and D. G. Yeo(2014), A study on the Selection Method of the Focused Promotion Subject for Future R&D of Maritime Safety, Proceedings of the Korean Society of Marine Environment and Safety, 2014.6, pp. 309-312.
  10. Lighthill, M. J.(1952), On Sound Generated Aerodynamically, I: General Theory, Proceedings of the Royal Society, A221, pp. 564-587.
  11. Norberg, C.(2003), Fluctuating Lift on a Circular Cylinder: Review and New Measurements, Journal of Fluids and Structures, Vol. 17, No. 1, pp. 57-96. https://doi.org/10.1016/S0889-9746(02)00099-3
  12. Orselli, R. M., J. R. Meneghini and F. Saltra(2009), Two and Three-dimensional Simulation of Sound Generated by Flow Around a Circular Cylinder, American Institute of Aeronautics and Astronautics 2009-3270.
  13. Park, I. C.(2012), 2-dimensional simulation of flow-induced noise around circular cylinder, Theses and Dissertations, Chungnam University.
  14. Singer, B. A. and D. P. Lockard(2003), Hybrid Acoustic Predictions, Computers and mathematics with Applications, Vol. 46, pp. 647-669. https://doi.org/10.1016/S0898-1221(03)90023-X
  15. Wang, M., J. B. Freund and S. K. Lele(2006), Computational Prediction of Flow-Generated Sound, Annual Review of Fluid Mechanics, Vol. 38, pp. 483-512. https://doi.org/10.1146/annurev.fluid.38.050304.092036

Cited by

  1. Turbulent-induced Noise of 2-dimensional Sonar Dome Shaped Structure vol.26, pp.1, 2016, https://doi.org/10.5050/KSNVE.2016.26.1.039
  2. 잠수함 형상의 유동소음 해석기법 연구 vol.24, pp.7, 2014, https://doi.org/10.7837/kosomes.2018.24.7.930