• Title/Summary/Keyword: FU

Search Result 1,675, Processing Time 0.031 seconds

Pharmacokinetics and Tissue Distribution of 5-Fluorouracil Prodrugs Entrapped in Liposome (리포좀에 봉입된 5-플루오로우라실 프로드럭의 약물 동태 및 장기 분포)

  • Lee, Gye-Won;Ji, Ung-Gil
    • YAKHAK HOEJI
    • /
    • v.40 no.5
    • /
    • pp.532-538
    • /
    • 1996
  • In cancer chemotherapy, it is necessary to control the phamacokinetic behavior of an antitumor drug for effective treatment. Therefore, two 5-fluorouracil derivatives synthesize d with N-a-cyloxycarbonyl derivatives {1-(N-t-butyloxycarbonyl)leucyloxymethyl-5-FU(BLFU) and 1-(N-t-carbobenzyloxymethyl)leucyloxymethyl-5-FU(CLFU)}. prodrugs of 5-fluorouracil, antitumor agent, were loaded into liposome of different lipid compositions. After liposomal drugs were injected intramuscularly, their pharmacokinetics and tissue distribution were assessed. The $AUC_{0{\to}{\infty}$ values were 1.29, 72.50, 85.57, 66.40 and 103.60${\mu}$g.hr/ml for 5-FU, BLFU, CLFU, BLFU- and CLFU-loaded liposome, respectively. 5-FU was distributed to spleen and liver with a maximal concentration after 1 hr and eliminated after 24 hr. But both prodrugs and dimyristoylphosphatidylcholine liposome entrapped prodrugs were distributed to spleen and liver at a lower concentration but maintained for a long time with a relatively high concentration in lung. Especially, liposome-entrapped CLFU was distributed to lung with a maximal concentration after 1 hr and redistributed to spleen increasingly, while the concentration of liposome-entrapped BLFU in lung reached a maximal level after 12 hr.

  • PDF

Effect of Ziziphi Jujubae Semen on 5-Fluorouracil Induced cytotoxicity in Cultured Vestibular Neurons (배양전정신경세포에 있어서 5-Fluorouracil의 세포독성에 대한 산조인의 효과)

  • Son Il Hong;Lee Jung Hun;Choi Yu Sun;Lee Jae Kyoo;Kim Hyung Su;Lee Yong Suk;Lee Whan Bong;Choi Ki Wook;Min Bu Ki;Kim Sang Su;Lee Kang Chang;Ryu Myeung Hwan;Song Ho Joon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.1
    • /
    • pp.146-149
    • /
    • 2002
  • To evaluate the protective effect of Ziziphi Jujubae Semen(ZJS) on 5-Fluorouracil(5-Fu) in cultured vestibular neurons(VN), neurotoxicity was assessed by XTT assay after VN was exposed to 3-24ug/ml 5-Fu for 48 hours. and also, the neuroprotective effect of ZJS was measured by XTT assay in these cultrures. Cell viability was remarkably decreased dose-dependently, after the treatment with 12ug/ml 5-Fu to cultured VN for 48 hours. In the neuroprotective effect of ZJS on the toxicity induced by 5-Fu, ZJS prevented the neurotoxicity induced by 5-Fu in these cultures. From above the results, it suggests that 5-Fu is toxic in cultured VN and herb extract, ZJS has protective effect over the neurotoxicity induced by 5-Fu.

Gelam Honey and Ginger Potentiate the Anti Cancer Effect of 5-FU against HCT 116 Colorectal Cancer Cells

  • Hakim, Luqman;Alias, Ekram;Makpol, Suzana;Ngah, Wan Zurinah Wan;Morad, Nor Azian;Yusof, Yasmin Anum Mohd
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.11
    • /
    • pp.4651-4657
    • /
    • 2014
  • The development of chemopreventive approaches using a concoction of phytochemicals is potentially viable for combating many types of cancer including colon carcinogenesis. This study evaluated the anti-proliferative effects of ginger and Gelam honey and its efficacy in enhancing the anti-cancer effects of 5-FU (5-fluorouracil) against a colorectal cancer cell line, HCT 116. Cell viability was measured via MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulphenyl)-2H-tetrazolium) assay showing ginger inhibiting the growth of HCT 116 cells more potently ($IC_{50}$ of 3mg/mL) in comparison to Gelam honey ($IC_{50}$ of 75mg/mL). Combined treatment of the two compounds (3mg/mL ginger+75mg/mL Gelam honey) synergistically lowered the $IC_{50}$ of Gelam honey to 22mg/mL. Combination with 35 mg/mL Gelam honey markedly enhanced 5-FU inhibiting effects on the growth of HCT 116 cells. Subsequent analysis on the induction of cellular apoptosis suggested that individual treatment of ginger and Gelam honey produced higher apoptosis than 5-FU alone. In addition, treatment with the combination of two natural compounds increased the apoptotic rate of HCT 116 cells dose-dependently while treatment of either ginger or Gelam honey combined with 5-FU only showed modest changes. Combination index analysis showed the combination effect of both natural compounds to be synergistic in their inhibitory action against HCT 116 colon cancer cells (CI 0.96 < 1). In conclusion, combined treatment of Gelam honey and ginger extract could potentially enhance the chemotherapeutic effect of 5-FU against colorectal cancer.

Validation of a Selective Method for Simultaneous Determination of Doxifluridine and 5-Fluorouracil in Dog Plasma by LC-MS/MS (LC/MS/MS를 이용한 비글견의 혈장 중 Doxifluridine 및 5-Fluorouracil의 동시 분석법 Validation)

  • Kim, Ghee-Hwan;Kim, Won;Kim, Jin-Sung;Jin, Qingri;Kang, Won-Ku;Lee, Jong-Hwa;Ha, Jung-Heun;Jeong, Eun-Ju
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.3
    • /
    • pp.179-186
    • /
    • 2007
  • A simple, sensitive and selective liquid chromatographic/tandem mass spectrometric method (LC-MS/MS) was developed and validated for doxifluridine and 5-fluorouracil (5-FU) quantification in dog heparinized plasma. Sample preparation was based on liquid-liquid extraction using a mixture of isopropanol/ethyl acetate (1/9 v/v) to extract doxifluridine, 5-FU and 5-chlorouracil (5-CU, an internal standard) from plasma. Chromatography was performed on a C-18 analytical column and the retention times were 2.7, 1.5 and 1.7 min for doxifluridine, 5-FU and 5-CU, respectively with shorter analysis time within 5 min than previously reported methods. The ionization was optimized using ESI negative mode and selectivity was achieved by tandem mass spectrometric analysis by multiple reaction monitoring (MRM) using the transformations of m/z 244.8>107.6, 129.0>42.0 and 144.9>42.1 for doxifluridine, 5-FU and 5-CU, respectively. The achieved low limit of quantification was 20.0 ng/mL and the assay exhibited linear range of 20-2000 ng/mL ($R^2>0.99957$ for doxifluridine and $R^2>0.99857$ for 5-FU), using $100{\mu}L$ of plasma. Accuracy and precision of quality control samples for both doxifluridine and 5-FU met KFDA and FDA Guidance criteria of 15% for accuracy with coefficients of variation less than 15%. This method demonstrated adequate sensitivity, specificity, accuracy, precision and stability to support the simultaneous analysis of doxifluridine and 5-FU in dog plasma samples in pharmacokinetic and bioequivalence studies.

Enhanced Cytotoxicity of 5-FU by bFGF through Up-Regulation of Uridine Phosphorylase 1

  • Im, Young-Sam;Shin, Hea Kyeong;Kim, Hye-Ryun;Jeong, So-Hee;Kim, Seung-Ryul;Kim, Yong-Min;Lee, Do Hyung;Jeon, Seong-Ho;Lee, Hyeon-Woo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.28 no.2
    • /
    • pp.119-124
    • /
    • 2009
  • Anti cancer agent 5-FU (Fluoro Uracil) is a prodrug that can be metabolized and then activated to interfere with RNA and DNA homeostasis. However, the majority of administered 5-FU is known to be catabolized in vivo in the liver where Dihydropyrimidine dehydrogenase (DPD) is abundantly expressed to degrade 5-FU. The biological factors that correlate with the response to 5-FU-based chemotherapy have been proposed to include uridine phosphorylase (UPP), thymidine phosphorylase (TPP), p53 and microsatellite instability. Among these, the expression of UPP is known to be controlled by cytokines such as $TNF-{\alpha}$, IL1 and $IFN-{\gamma}$. Our preliminary study using a DNA microarray technique showed that basic fibroblast growth factor (bFGF) markedly induced the expression of UPP1 at the transcription level. In the present study, we investigated whether bFGF could modulate the expression of UPP1 in osteo-lineage cells and examined the sensitivity of these cells to 5-FU mediated apoptosis.

Epithelial-mesenchymal Transition is Associated with Acquired Resistance to 5-Fluorocuracil in HT-29 Colon Cancer Cells

  • Kim, A-Young;Kwak, Jae-Hwan;Je, Nam Kyung;Lee, Yun-hee;Jung, Young-Suk
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.151-156
    • /
    • 2015
  • 5-Fluorouracil (5-FU) is commonly used for the therapy of colon cancer; however, acquired resistance to 5-FU is a critical barrier to successful treatment and the primary cause of chemotherapy failure. Epithelial-mesenchymal transition (EMT) is a process whereby cells undergo alterations in morphology and molecular characteristics promoting tumor progression and metastasis. Accumulating evidence shows that transition from epithelial to mesenchymal phenotype in cancer cells is associated with their resistance to chemotherapy. However, it is still poorly understood whether EMT is involved in acquired resistance to 5-FU. In this study, we developed an in vitro cell model, 5-FU-resistant HT-29 colon cancer cells, and characterized the differences in cellular morphology and molecular alterations between parental and resistant cells. In accord with mesenchymal-like morphology of 5-FU-resistant HT-29 cells, the expression of the mesenchymal marker fibronectin was significantly increased in these cells in comparision with that in the parental cells. Of interest, we also found a marked increase in the expression of EMT-inducing transcription factors Twist, Zeb1, and Zeb2. Finally, 5-FU-resistant cells showed enhanced migration in comparison with parental HT-29. Taken together, these results indicate that EMT could be associated with 5-FU resistance acquired by HT-29 cells. A specific role of each transcription factor found in this study will require further investigation.

Anti-proliferative Effect of Tetra-arsenic Oxide (TetraAs®) in Human Gastric Cancer Cells in Vitro

  • Chung, Won-Heui;Koo, Hye-Jin;Kuh, Hyo-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.37 no.5
    • /
    • pp.305-309
    • /
    • 2007
  • Arsenic compounds have been used to treat various diseases including cancer in oriental medicine. Arsenic trioxide ($As_2O_3,\;Trisenox^{(R)}$) has been used for the treatment of leukemia and its anti-solid tumor activity has also been reported recently. Tetra-arsenic oxide ($As_4O_6,\;TetraAs^{(R)}$) is a newly developed arsenic compound which has shown an anticancer activity in some human cancer cell lines. The purpose of this study was to evaluate the anti-gastric cancer potential of TetraAs and to search for an agent with synergistic interaction with TetraAs against human gastric cancers. We analysed anti-proliferative effect of TetraAs when given alone and in combination with other chemotherapeutic agents such as 5-FU, paclitaxel, and cisplatin in SNU-216, a human gastric cancer cell line. The $IC_{50}$ of these 4 anti-cancer drugs ranged from 5.8 nM to $7.5\;{\mu}M$ with a potency rank of order paclitaxel>TetraAs>cisplatin>5-FU. TetraAs showed 10-fold greater potency than 5-FU and cisplatin at the same effect level of $IC_{50}$. TetraAs+5-FU and TetraAs+paclitaxel showed synergistic and additive interaction, respectively. On the other hand, TetraAs with cisplatin group appeared to be strongly antagonistic. Apoptotic population was measured and compared between single and combination treatment. The apoptotic cells for the combination of TetraAs+5-FU showed significant increase compared to single TetraAs treatment. On the contrary, TetraAs+cisplatin showed less apoptotic cells compared to TetraAs or cisplatin alone treatment. Overall, our results indicate that TetraAs can be effectively combined with 5-FU or paclitaxel, but not with cisplatin for synergistic anti-cancer effect, which warrants further evaluation using in vivo models.

Simultaneous Determination of Doxifluridine and 5-FU in Liver and Intestine Tissue Using LC/MS/MS (LC/MS/MS를 이용한 원숭이 및 비글견의 간 및 장관 조직에서의 Doxifluridine과 대사체 5-FU 동시분석법 개발)

  • Woo, Young-Ah;Kim, Ghee-Hwan;Jeong, Eun-Ju;Kim, Choong-Yong
    • YAKHAK HOEJI
    • /
    • v.52 no.2
    • /
    • pp.93-100
    • /
    • 2008
  • A liquid chromatographic method with tandom spectrometric detection (LC/MS/MS) for the simultaneous determination of doxifluridine and its active metabolite, 5-fluorouracil (5-FU) was developed over the concentration range of $5{\sim}2000$ ng/ml, respectively. Doxifluridine, 5-FU and internal standard, 5-chlorouracil (5-CU), were extracted from liver and intestine tissue via protein precipitation. Acetonitrile was used as the extraction solvent and the supernatant was evaporated and reconstructed in mobile phase. Optimum chromatographic separation was achieved on a Agilent Zorbax $C_{18}$ ($100\;mm{\times}2.1\;mm$, $3.5\;{\mu}m$) column with mobile phase run in isocratic with methanol : water (20 : 80, v/v). The flow rate was 0.2 ml/min with total cycle time of 5 min. The lower limit of quantification was validated at 5.0 ng/ml of liver and intestine tissue, for both doxifluridine and 5-FU, respectively. The intra-day and inter-day precision and accuracy of quality control (QC) samples were <11% coefficient of variation and <7% relative error from theoretical concentration for both analytes. In addition, the special designed stability study was performed, because the metabolism of doxifluridine occurs spontaneously even in ice bath for monkey liver. The stability of doxifluridine in liver and intestine of monkey and beagle dog was compared. It was found that bioanalytical validation could not be performed for the monkey liver; however, beagle dog's liver has relatively low speed of metabolism compared to monkey liver and instead of monkey liver, beagle dog's liver could be used for the validation. Bioanalytical validation could be performed in monkey intestine. Eventually, this developed method for liver and intestine will be useful in support of the toxicokinetic and pharmacokinetic studies of doxifluridine and 5-FU.

Combined Treatment with 5-Fluorouracil and Capsaicin Induces Apoptosis in HT-29 Human Colon Cancer Cells (5-Fluorouracil과 Capsaicin의 병용에 의한 HT-29 대장암세포 사멸 증진 효과)

  • Lee, Yun-Seok;Lee, Jong-Suk;Kim, Jung-Ae
    • YAKHAK HOEJI
    • /
    • v.53 no.4
    • /
    • pp.184-188
    • /
    • 2009
  • Fluorouracil (5-FU) is one of the most widely used chemotherapeutic drugs in the treatment of advanced colorectal cancer patients. Capsaicin (N-vanillyl-8-methyl-alpha-nonenamide), a spicy component of hot pepper, is a homovanillic acid derivative that preferentially induces cancer cells to undergo apoptosis. The purpose of the present study is to examine whether capsaicin enhances the anticancer effect of 5-fluorouracil in HT-29 human colon cancer cells by inducing apoptosis, and whether PPARgamma is involved in the capsaicin action in combination treatment with 5-FU. Treatment of the cells with either 5-FU or capsaicin alone for 48 h had little effect on the cell viability up to $50{\mu}M$ concentration, whereas co-treatment of the cells with capsaicin in the presence of 5-FU for 48 h significantly decreased the cell viability in a concentration-dependent manner. In addition, caspase-3 activity, a marker enzyme for apoptosis, was significantly increased by the combined treatment with 5-FU and capsaicin compared to the 5-FU or capsaicin alone treatment. Also, treatment with troglitazone, a peroxisome proliferator-activated receptor gamma ($PPAR{\gamma}$) agonist, further enhanced the effect of the combination treatment on the cell viability and caspase-3 activity, and bisphenol A diglycidyl ether (BADGE), a $PPAR{\gamma}$ antagonist, blocked the effect of the combination treatment. These results suggest that the combination treatment of HT-29 cells with 5-FU and capsaicin induces apoptotic cell death at relatively low concentration than each drug alone, and the combination treatment may be associated with the $PPAR{\gamma}$ pathway activation.

ER71/ETV2 Promotes Hair Regeneration from Chemotherapeutic Drug-Induced Hair Loss by Enhancing Angiogenesis

  • Lee, Tae-Jin;Kang, Hee-Kyoung;Berry, Jeffrey C.;Joo, Hong-Gu;Park, Changwon;Miller, Mark J.;Choi, Kyunghee
    • Biomolecules & Therapeutics
    • /
    • v.29 no.5
    • /
    • pp.545-550
    • /
    • 2021
  • Chemotherapy-induced alopecia and hair loss can be stressful in patients with cancer. The hair grows back, but sometimes the hair tends to stay thin. Therefore, understanding mechanisms regulating hair regeneration may improve the management of chemotherapy-induced alopecia. Previous studies have revealed that chemotherapeutic agents induce a hair follicle vascular injury. As hair growth is associated with micro-vessel regeneration, we postulated that the stimulation of angiogenesis might enhance hair regeneration. In particular, mice treated with 5-fluorouracil (5-FU) showed delayed anagen initiation and reduced capillary density when compared with untreated controls, suggesting that the retardation of anagen initiation by 5-FU treatment may be attributed to the loss of perifollicular micro-vessels. We investigated whether the ETS transcription factor ETV2 (aka ER71), critical for vascular development and regeneration, can promote angiogenesis and hair regrowth in a 5-FU-induced alopecia mouse model. Tie2-Cre; Etv2 conditional knockout (CKO) mice, which lack Etv2 in endothelial cells, presented similar hair regrowth rates as the control mice after depilation. Following 5-FU treatment, Tie2-Cre; Etv2 CKO mice revealed a significant reduction in capillary density, anagen induction, and hair restoration when compared with controls. Mice receiving lentiviral Etv2 injection after 5-FU treatment showed significantly improved anagen induction and hair regrowth. Two-photon laser scanning microscopy revealed that enforced Etv2 expression restored normal vessel morphology after 5-FU mediated vessel injury. Our data suggest that vessel regeneration strategies may improve hair regrowth after chemotherapeutic treatment.