• Title/Summary/Keyword: FTIR spectrometer

Search Result 65, Processing Time 0.024 seconds

Characterization of ruby single crystal grown by $PbO-B_2O_3$ flux ($PbO-B_2O_3$ 플럭스에 의해 성장한 루비단결정의 특성평가)

  • Cho, Min-Hee;Seo, Jin-Gyo;Ahn, Yong-Kil;Park, Jong-Wan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.19 no.4
    • /
    • pp.165-171
    • /
    • 2009
  • In this study, ruby single crystals were successfully grown by flux method using an alumina crucible. The alumina crucible can be a substitute for the platinum crucible of high price. The ruby single crystals were grown in the temperature range of $915{\sim}1350^{\circ}C$ for 240 h, using $PbO-B_2O_3$ mixture. The grown ruby crystals with 9.02 ${\times}$ 6.36 mm in size exhibited red color and were transparent. The optical and structural properties were examined by UV-VIS spectrometry, FTIR and XRD. The optical properties of theses crystals were similar to those of the natural ruby and synthetic ruby grown by other methods.

Energy-band model on photoresponse transitions in biased asymmetric dot-in-double-quantum-well infrared detector

  • Sin, Hyeon-Uk;Choe, Jeong-U;Kim, Jun-O;Lee, Sang-Jun;No, Sam-Gyu;Lee, Gyu-Seok;Krishna, S.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.234-234
    • /
    • 2010
  • The PR transitions in asymmetric dot-in-double-quantum-well (DdWELL) photodetector is identified by bias-dependent spectral behaviors. Discrete n-i-n infrared photodetectors were fabricated on a 30-period asymmetric InAs-QD/[InGaAs/GaAs]/AlGaAs DdWELL wafer that was prepared by MBE technique. A 2.0-monolayer (ML) InAs QD ensemble was embedded in upper combined well of InGaAs/GaAs and each stack is separated by a 50-nm AlGaAs barrier. Each pixel has circular aperture of 300 um in diameter, and the mesa cell ($410{\times}410\;{\mu}m^2$) was defined by shallow etching. PR measurements were performed in the spectral range of $3{\sim}13\;{\mu}m$ (~ 100-400 meV) by using a Fourier-transform infrared (FTIR) spectrometer and a low-noise preamplifier. The asymmetric photodetector exhibits unique transition behaviors that near-/far-infrared (NIR/FIR) photoresponse (PR) bands are blue/red shifted by the electric field, contrasted to mid-infrared (MIR) with no dependence. In addition, the MIR-FIR dual-band spectra change into single-band feature by the polarity. A four-level energy band model is proposed for the transition scheme, and the field dependence of FIR bands numerically calculated by a simplified DdWELL structure is in good agreement with that of the PR spectra. The wavelength shift by the field strength and the spectral change by the polarity are discussed on the basis of four-level transition.

  • PDF

Optical Properties of Infinite-Layer Superconductors $Sr_{0.9}$$Ln_{0.1}$Cu$O_2$ (LnLa, Gd, Sm) (무한층 초전도체 $Sr_{0.9}Ln_{0.1}CuO_2$(Ln=La, Gd, Sm)의 광학적 성질)

  • Mun, Mi-Ock;Park, Young-Sub;Kim, Kibum;Kim, Jae H.;A. B. Kuzmenko
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.13-16
    • /
    • 2001
  • We have measured the reflectivity of superconducting infinite-layer compounds $Sr_{0.9}$ $Ln_{0.1}$ Cu $O_2$ (Ln=La, Gd, Sm) with $T_{c}$ : 39 K using a Fourier-transform infrared spectrometer. We have identified the optical phonon modes from their infrared reflectivity and conductivity spectra and have proposed possible displacement patterns. The La- and the Gd-doped compounds exhibited only four ($2A_{2u}$ $+2E_{u}$) out of the five ($2A_{2u}$ $3E_{u}$) infrared-active phonons predicted by a group theoretical analysis whereas the Sm-doped compound exhibited all five modes. For the La-doped sample, we investigated the temperature dependence of the optical response functions in a wide temperature range of 7 - 300 K. In FIR region, the reflectivity is apparently enhanced below ~120 $cm^{-1}$ as temperature decreases across $T_{c}$. The value of $2$\Delta$/k_{B}$ $T_{c}$ is about 4.5, which is consistent with maximum gap value of d-wave $high- T_{c}$ cuprates.> c/ cuprates.uprates.s.

  • PDF

Degradation of Pesticides in Wastewater Using Plasma Process Coupled with Photocatalyst (광촉매를 병합한 플라즈마 공정을 이용한 폐수에 함유된 살충제 분해)

  • Jang, Doo Il;Kim, Kil-Seong;Hyun, Young Jin
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.87-92
    • /
    • 2013
  • Nonthermal plasma hybridized with photocatalysts is proven to be an effective tool to degrade toxic organics in wastewater. In this study, a specially designed dielectric barrier discharge (DBD) plasma system combined with photocatalysts was applied to decompose pestiticides such as dichlorovos, carbofuran and methidathon, which are frequently used in the golf courses and the orange plantations. The degradations of the pesticides in single and coupled systems were evaluated. The single system was used with ozone plasma which consisted of electrons, radicals, ions produced by oxygen gas and air, with and without ultra-violet (UV) irradiation, respectively. The coupled systems utilized the air-derived ozone plasma combined with zinc oxide, titanium dioxide and graphite oxide photocatalyst activated by UV. The graphite oxide was synthesized by a modified Hummer's method and characterized using FTIR spectrometer. It was elucidated that the plasma reaction with graphite oxide (0.01 g/L) brought about almost 100% of degradation degrees for dichlorovos and carbofuran in 60 min, as compared with the performances showed by no catalyst condition. The photocatalyst-hybridized plasma in the presence of UV irradiation was proven to be an effective alternative for degrading pesticides.

Abatement of CF4 Using RF Plasma with Annular Shape Electrodes Operating at Low Pressure (환상형상 전극구조를 갖는 저압 RF plasma를 이용한 CF4 제거)

  • Lee, Jae-Ok;Hur, Min;Kim, Kwan-Tae;Lee, Dae-Hoon;Song, Young-Hoon;Lee, Sang-Yun;Noh, Myung-Keun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.26 no.6
    • /
    • pp.690-696
    • /
    • 2010
  • Abatement of perfluorocompounds (PFCs) used in semiconductor and display industries has received an attention due to the increasingly stricter regulation on their emission. In order to meet this circumstance, we have developed a radio frequency (RF) driven plasma reactor with multiple annular shaped electrodes, characterized by an easy installment between a processing chamber and a vacuum pump. Abatement experiment has been performed with respect to $CF_4$, a representative PFCs widely used in the plasma etching process, by varying the power, $CF_4$ and $O_2$ flow rates, $CF_4$ concentration, and pressure. The influence of these variables on the $CF_4$ abatement was analyzed and discussed in terms of the destruction & removal efficiency (DRE), measured with a Fourier transform infrared (FTIR) spectrometer. The results revealed that DRE was enhanced with the increase in the discharge power and pressure, but dropped with the $CF_4$ flow rate and concentration. The addition of small quantity of $O_2$ lead to the improvement of DRE, which, however, leveled off and then decreased with $O_2$ flow rate.

Adsorption Behaviors of Metal Elements onto Illite and Halloysite (일라이트, 할로이사이트에 대한 중금속 원소의 흡착특성)

  • 추창오;김수진;정찬호;김천수
    • Journal of the Mineralogical Society of Korea
    • /
    • v.11 no.1
    • /
    • pp.20-31
    • /
    • 1998
  • Adsorption of metal elements onto illite and halloysite was investigated at $25^{\circ}C$ using pollutant water collected from the gold-bearing metal mine. Incipient solution of pH 3.19 was reacted with clay minerals as a function of time: 10 minute, 30 minute, 1 hour, 12 hour, 24 hour, 1 day, 2 day, 1 week, and 2 week. Twenty-seven cations and six anions from solutions were analyzed by AAs (atomic absorption spectrometer), ICP(induced-coupled plasma), and IC (ion chromatography). Speciation and saturation index of solutions were calculated by WATEQ4F and MINTEQA2 codes, indicating that most of metal ions exist as free ions and that there is little difference in chemical species and relative abundances between initial solution and reacted solutions. The adsorption results showed that the adsorption extent of elements varies depending on mineral types and reaction time. As for illite, adsorption after 1 hour-reaction occurs in the order of As>Pb>Ge>Li>Co, Pb, Cr, Ba>Cs for trace elements and Fe>K>Na>Mn>Al>Ca>Si for major elements, respectively. As for halloysite, adsorption after 1 hour-reaction occurs in the order of Cu>Pb>Li>Ge>Cr>Zn>As>Ba>Ti>Cd>Co for trace elements and Fe>K>Mn>Ca>Al>Na>Si for major elements, respectively. After 2 week-reaction, the adsorption occurs in the order of Cu>As>Zn>Li>Ge>Co>Ti>Ba>Ni>Pb>Cr>Cd>Se for trace elements and Fe>K>Mn>Al, Mg>Ca>Na, Si for major elements, respectively. No significant adsorption as well as selectivity was found for anions. Although halloysite has a 1:1 layer structure, its capacity of adsorption is greater than that of illite with 2:1 structure, probably due to its peculiar mineralogical characteristics. According to FTIR (Fourier transform infrared spectroscopy) results, there was no shift in the OH-stretching bond for illite, but the ν1 bond at 3695 cm-1 for halloysite was found to be stronger. In the viewpoint of adsorption, illite is characterized by an inner-sphere complex, whereas halloysite by an outer-sphere complex, respectively. Initial ion activity and dissociation constant of metal elements are regarded as the main factors that control the adsorption behaviors in a natural system containing multicomponents at the acidic condition.

  • PDF

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Green Synthesis of Copper Nano-Drug and Its Dental Application upon Periodontal Disease-Causing Microorganisms

  • El-Rab, Sanaa M.F. Gad;Basha, Sakeenabi;Ashour, Amal A.;Enan, Enas Tawfik;Alyamani, Amal Ahmed;Felemban, Nayef H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.12
    • /
    • pp.1656-1666
    • /
    • 2021
  • Dental pathogens lead to chronic diseases like periodontitis, which causes loss of teeth. Here, we examined the plausible antibacterial efficacy of copper nanoparticles (CuNPs) synthesized using Cupressus macrocarpa extract (CME) against periodontitis-causing bacteria. The antimicrobial properties of CME-CuNPs were then assessed against oral microbes (M. luteus. B. subtilis, P. aerioginosa) that cause periodontal disease and were identified using morphological/ biochemical analysis, and 16S-rRNA techniques. The CME-CuNPs were characterized, and accordingly, the peak found at 577 nm using UV-Vis spectrometer showed the formation of stable CME-CuNPs. Also, the results revealed the formation of spherical and oblong monodispersed CME-CuNPs with sizes ranged from 11.3 to 22.4 nm. The FTIR analysis suggested that the CME contains reducing agents that consequently had a role in Cu reduction and CME-CuNP formation. Furthermore, the CME-CuNPs exhibited potent antimicrobial efficacy against different isolates which was superior to the reported values in literature. The antibacterial efficacy of CME-CuNPs on oral bacteria was compared to the synergistic solution of clindamycin with CME-CuNPs. The solution exhibited a superior capacity to prevent bacterial growth. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitory concentration (FIC) of CME-CuNPs with clindamycin recorded against the selected periodontal disease-causing microorganisms were observed between the range of 2.6-3.6 ㎍/ml, 4-5 ㎍/ml and 0.312-0.5, respectively. Finally, the synergistic antimicrobial efficacy exhibited by CME-CuNPs with clindamycin against the tested strains could be useful for the future development of more effective treatments to control dental diseases.

Analysis on the influence of sports equipment of fiber reinforced composite material on social sports development

  • Jian Li;Ningjiang Bin;Fuqiang Guo;Xiang Gao;Renguo Chen;Hongbin Yao;Chengkun Zhou
    • Advances in nano research
    • /
    • v.15 no.1
    • /
    • pp.49-57
    • /
    • 2023
  • As composite materials are used in many applications, the modern world looks forward to significant progress. An overview of the application of composite fiber materials in sports equipment is provided in this article, focusing primarily on the advantages of these materials when applied to sports equipment, as well as an Analysis of the influence of sports equipment of fiber-reinforced composite material on social sports development. The present study investigated surface morphology and physical and mechanical properties of S-glass fiber epoxy composites containing Al2O3 nanofillers (for example, 1 wt%, 2 wt%, 3 wt%, 4 wt%). A mechanical stirrer and ultrasonication combined the Al2O3 nanofiller with the matrix in varying amounts. A compression molding method was used to produce sheet composites. A first physical observation is well done, which confirms that nanoparticles are deposited on the fiber, and adhesive bonds are formed. Al2O3 nanofiller crystalline structure was investigated by X-ray diffraction, and its surface morphology was examined by scanning electron microscope (SEM). In the experimental test, nanofiller content was added at a rate of 1, 2, and 3% by weight, which caused a gradual decrease in void fraction by 2.851, 2.533, and 1.724%, respectively, an increase from 2.7%. The atomic bonding mechanism shows molecular bonding between nanoparticles and fibers. At temperatures between 60 ℃ and 380 ℃, Thermogravimetric Analysis (TGA) analysis shows that NPs deposition improves the thermal properties of the fibers and causes negligible weight reduction (percentage). Thermal stability of the composites was therefore presented up to 380 ℃. The Fourier Transform Infrared Spectrometer (FTIR) spectrum confirms that nanoparticles have been deposited successfully on the fiber.

THE EFFECT OF IRRADIATION MODES ON POLYMERIZATION AND MICROLEAKAGE OF COMPOSITE RESIN (광조사 방식이 복합레진의 중합과 누출에 미치는 영향)

  • Park, Jong-Jin;Park, Jeong-Won;Park, Sung-Ho;Park, Ju-Myong;Kwon, Tae-Kyung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.27 no.2
    • /
    • pp.158-174
    • /
    • 2002
  • The aim of this study was to investigate the effect of light irradiation modes on polymerization shrinkage, degree of cure and microleakage of a composite resin. VIP$^{TM}$ (Bisco Dental Products, Schaumburg, IL, USA) and Optilux 501$^{TM}$ (Demetron/Kerr, Danbury, CT, USA) were used for curing Filtek$^{TM}$ Z-250 (3M Dental Products, St. Paul., MN, USA) composite resin using following irradiation modes: VIP$^{TM}$ (Bisco) 200mW/$\textrm{cm}^2$ (V2), 400mW/$\textrm{cm}^2$ (V4), 600mW/$\textrm{cm}^2$ (V6), Pulse-delay (200 mW/$\textrm{cm}^2$ 3 seconds, 5 minutes wait, 600mW/$\textrm{cm}^2$ 30seconds, VPD) and Optilux 501$^{TM}$ (Demetron/Kerr) C-mode (OC), R-mode (OR). Linear polymerization shrinkage of the composite specimens were measured using Linometer (R&B, Daejeon, Korea) for 90 seconds for V2, V4, V6, OC, OR groups and for up to 363 seconds for VPD group (n=10, each). Degree of conversion was measured using FTIR spectrometer (IFS 120 HR, Bruker Karlsruhe, Germany) at the bottom surface of 2 mm thick composite specimens V2, Y4, V6, OC groups were measured separately at five irradiation times (5, 10, 20, 40, 60 seconds) and OR, VPD groups were measured in the above mentioned irradiation modes (n=5 each). Microhardness was measured using Digital microhardness tester (FM7, Future-Tech Co., Tokyo, Japan) at the top and bottom surfaces of 2mm thick composite specimens after exposure to the same irradiation modes as the test of degree of conversion(n=3, each). For the microleakage test, class V cavities were prepared on the distal surface of the ninety extracted human third molars. The cavities were restored with one of the following irradiation modes : V2/60 seconds, V4/40 seconds, V6/30 seconds, VPD , OC and OR. Microleakage was assessed by dye penetration along enamel and dentin margins of cavities. Mean polymerization shrinkage, mean degree of conversion and mean microhardness values for all groups at each time were analyzed using one-way ANOVA and Duncan's multiple range test, and using chi-square test far microleakage values. The results were as follows : . Polymerization shrinkage was increased with higher light intensity in groups using VIP$^{TM}$ (Bisco) : the highest with 600mW/$\textrm{cm}^2$, followed by Pulse-delay, 400mW/$\textrm{cm}^2$ and 200mW/$\textrm{cm}^2$ groups, The degree of polymerization shrinkage was higher with Continuous mode than with Ramp mode in groups using Optilux 501$^{TM}$ (Demetron/Kerr). . Degree of conversion and microhardness values were higher with higher light intensity. The final degree of conversion was in the range of 44.7 to 54.98% and the final microhardness value in the range of 34.10 to 56.30. . Microleakage was greater in dentin margin than in enamel margin. Higher light intensity showed more microleakage in dentin margin in groups using VIP$^{TM}$ (Bisco). The microleakage was the lowest with Continuous mode in enamel margin and with Ramp mode in dentin margin when Optilux 501$^{TM}$ (Demetron/Kerr) was used.