• Title/Summary/Keyword: FT-ATR

Search Result 60, Processing Time 0.028 seconds

Oxidation Properties of Polychloroprene by Irradiation Degradation (방사선 열화에 따른 Polychloroprene의 산화특성)

  • Kim, Ki-Yup;Kang, Hyun-Koo;Ryu, Boo-Hyung;Lee, Chung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.456-459
    • /
    • 2003
  • Polychloroprene(CR) is well known as elastomer commonly utilized in the electrical. It is mainly used for cable jacket and insulator. The irradiation degradation property of polymer materials is very important to prevent unexpected accidents in the Nuclear Power Plant(NPP). The irradiation degradation is caused by the oxidation of polymer materials, and this oxidation is occurred by oxygen radical produced from air. In this study, we evaluate the oxidation properties of CR. CR is irradiated for 200, 400, 600, 1000 kGy radiation dose. The oxidation properties of irradiated CR are investigated by differential scanning calorimetry, dynamic mechanical properties and FT-IR/ATR. Glass transition temperature(Tg), decomposition onset temperature(DOT), loss modulus and mechanical tan $\delta$ values are compared together. The irradiation limit of CR in the NPP, is known for 500 kGy, and this is exactly matched with investigated results.

  • PDF

Effects of Optical Brightening Agent on the Chemical Degradation Characteristics of Paper Cellulose (형광증백제가 종이 셀룰로오스의 화학적 열화특성에 미치는 영향)

  • Lee, Jae-Hun;Choi, Kyoung-Hwa;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.6
    • /
    • pp.66-72
    • /
    • 2015
  • This study was conducted to investigate the effects of optical brightening agents (OBA) on the chemical degradation characteristics of paper cellulose during humid heating aging. Three different types of OBAs were applied to a filter paper by dipping it in OBA solutions whose concentrations were controlled to 1% and 2%. The filter papers with an OBA were artificially aged at $80^{\circ}C$ and 65% RH, and the changes in pH of paper and viscosity of cellulose were evaluated. Their functional groups were also analyzed by ATR-FTIR (at-tenuated total reflectance fourier transform infrared spectroscopy). It was found that OBAs influenced the chemical degradation of paper cellulose during humid heating aging. Higher concentration of OBA solutions accelerated the degradation of paper cellulose. Especially, after aging for 12 days, the paper cellulose treated with the tetra-type OBA were the most significantly aged among the three types of OBAs. It was assumed that pH of OBA solutions affected the aging characteristics.

Preparation and Characterization of Crosslinked Sodium Alginate Membranes for the Dehydration of Organic Solvents

  • Goo, Hyung Seo;Kim, In Ho;Rhim, Ji Won;Golemme, Giovanni;Muzzalupo, Rita;Drioli, Enrico;Nam, SangYong
    • Korean Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.55-60
    • /
    • 2004
  • In recent years, an increasing interest in membrane technology has been observed in chemical and environmental industry. Membrane technology has advantages of low cost, energy saving and environmental clean technology comparing to conventional separation processes. Pervaporation is one of new advanced membrane technology applied for separation of azeotropic mixtures, aqueous organic mixtures, organic solvent and petrochemical mixtures. Sodium alginate composite membranes were prepared for the enhancement of long-term stability of pervaporation performance of water-ethanol mixture using pervaporation. Sodium alginate membranes were crosslinked with CaCl$_2$ and coated with polyelectrolyte chitosan to protect washing out of calcium ions from the polymer. The surface structures of PAN and hydrolysed PAN membrane were confirmed by ATR Fourier transform infrared (FT-IR). A field emission scanning electron microscopy (FE-SEM; Jeol 6340F) operated at 15 kV. Concentration profiles for Ca in the membrane surface and membrane cross-section were taken by an energy dispersive X-ray (EDX) analyser (Jeol) attached to the field emission scanning electron microscopy (Jeol 6340F). Pervaporation experiments were done with several operation run times to investigate long-term stability of the membranes.

Amino-Functionalized Alkylsilane SAM-Assisted Patterning of Poly(3-hexylthiophene) Nanofilm Robustly Adhered to SiO2 Substrate

  • Pang, Ilsun;Boo, Jin-Hyo;Sohn, Honglae;Kim, Sung-Soo;Lee, Jae-Gab
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.7
    • /
    • pp.1349-1352
    • /
    • 2008
  • We report a novel patterning method for a homo-polymeric poly(3-hexylthiophene) (P3HT) nanofilm particularly capable of strong adhesion to a $SiO_2$ surface. An oxidized silicon wafer substrate was micro-contact printed with n-octadecyltrichlorosilane (OTS) monolayer, and subsequently its negative pattern was selfassembled with three different amino-functionalized alkylsilanes, (3-aminopropyl)trimethoxysilane (APS), N- (2-aminoethyl)-3-aminopropyltrimethoxy silane (EDAS), and (3-trimethoxysilylpropyl) diethylenetriamine (DETAS). Then, P3HT nanofilms were selectively grown on the aminosilane pre-patterned areas via the vapor phase polymerization method. To evaluate the adhesion, patterning, and the film itself, the PEDOT nanofilms and SAMs were investigated with a $Scotch^{(R)}$ tape test, contact angle analyzer, ATR-FT-IR, and optical and atomic force microscopes. The evaluation showed that the newly developed all bottom-up process can offer a simple and inexpensive patterning method for P3HT nanofilms robustly adhered to an oxidized Si wafer surface by the mediation of $FeCl_3$ and amino-functionalized alkylsilane SAMs.

The Preparation of a Thermally Responsive Surface by Ion Beam-induced Graft Polymerization

  • Jung, Chang-Hee;Kim, Wan-Joong;Jung, Chan-Hee;Hwang, In-Tae;Choi, Jae-Hak
    • Journal of Radiation Industry
    • /
    • v.6 no.4
    • /
    • pp.317-322
    • /
    • 2012
  • In this study, the preparation of a temperature-responsive poly(N-isopropylacrylamide) (PNIPAAm)-grafted surface was performed using an eco-friendly and biocompatible ion beam-induced surface graft polymerization. The surface of a perfluoroalkoxy (PFA) film was activated by ion implantation and N-isopropylacrylamide (NIPAAm) was then graft polymerized selectively onto the activated regions of the PFA surfaces. Based on the results of the peroxide concentration and grafting degree measurements, the amount of the peroxide groups formed on the implanted surface was dependant on the fluence, which affected the grafting degree. The results of the FT-IR-ATR, XPS, and SEM confirmed that the NIPAAm was successfully grafted onto the implanted PFA. Moreover, the contact angle measurement at different temperatures revealed that the surface of the PNIPAAm-grafted PFA film was temperature-responsive.

Study on Scientific Analysis about Red Pigment And Binder - The Korean Ancient Red Pottery - (한국 고대 붉은 간토기의 적색 안료 및 교착제에 대한 과학적 분석)

  • Lee, Ui Cheon;Park, Jung Hae;Lee, Je Hyun;Kim, Soo Chul
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.606-616
    • /
    • 2021
  • From the collection of the National Kimhae Museum, qualitative analyses using microscopic observation, SEM-EDS, Raman spectroscopy, FT-IR-ATR spectroscopy, and GC-MS were conducted on three burnished red potteries-Jeoksaekmaoyeonwa burnished red pottery (Neolithic age red pottery), Dandomaoyeonwan burnished red pottery(Bronze age red pottery) and Jeoksaekmaoyeongajimun burnished red pottery(Bronze age red pottery)-to investigate the components of the red pigments and the binder. After the layers of the primer were separated from the red surface, crystals of red pigment particles and minerals were found on the red surface. Through SEM-EDS, Raman estimates that the red pigment is Among soil pigments with iron oxide(Fe2O3) as the main color development source, Red Ocher(Fe2O3). A band characteristic of the Urushiol polymer was detected in the FTIR-ATRspectra(4000~600cm-1), GC-MS analysis confirmed the presence of the benzenemethanol-2-prophenyl, 4-heptylphenol, 1-tetracecanol, heptafluorobutyric texidecane, all of which are the ingredients of the directional structure of the lacquer present in the red layer. Therefore, it seemed that the three burnished red pottery: Jeoksaekmaoyeonwan pottery(Neolithic age burnished red pottery), Dandomaoyeonwan pottery(bronze age burnished red pottery) and the Jeoksaekmaoyeongajimun pottery(bronze age burnished red pottery) made by mixing minerals and Red Ocher(Fe2O3), with lacquer.

Preparation and Characterization of Biomass-based Polymer Blend Films (Biomass-based 고분자 블렌드필름의 제조 및 특성 연구)

  • Lee, Soo;Jin, Seok-Hwan;Lee, Jae-Won
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.95-101
    • /
    • 2012
  • To manufacture of a completely biodegradable and compostable biomass -based blend polymer film, two types of cellulose acetates(DS=2.4 and DS=2.7) were blended with 5 - 50 wt% of low average molecular weight polylactide(PLA) by mixing each polymer solution having same viscosity in 10 wt% methanol/dichloromethane. Their surface morphology, thermal and mechanical properties were studied. The chemical structures of blend films were confirmed by the fourier transform IR spectroscopy with attenuated total reflection(FT-IR ATR) spectrophotometer. Scanning electron microscope(SEM) photos of blend films of both CAs with less than 5 % of PLA showed homogeneous morphology. On the contrary, the other blends with higher than 20 wt% of PLA content showed a large phase separation with spherical domains. The thermal property of blend films was also analyzed with thermogravimetric analysis(TGA) and differential scanning calorimeter(DSC). The tensile strength of CA/PLA blend films was increased up to $820kg_f/cm^2$ for TAC/PLA and $600kg_f/cm^2$ for DAC/PLA.

Grafting of MMA onto MCC through free radical method and its application to all natural cellulose composite film preparation (Microcrystalline cellulose에 자유 라디칼을 이용한 methyl methacrylate의 그래프팅 반응과 이를 이용한 천연복합필름의 제조)

  • Lee, Soo;Park, Sang-Hee;Jin, Seok-Hwan;Lee, Sun-Young
    • Journal of the Korean Applied Science and Technology
    • /
    • v.25 no.4
    • /
    • pp.459-468
    • /
    • 2008
  • Methyl methacrylate(MMA) was grafted onto microcrystalline cellulose(MCC) with ceric ammonium nitrate(CAN) as a redox initiator at the various conditions. The cellulose triacetate(CTA) composite films added MCC and MMA-grafted MCC powders were prepared on a glass plate. The graft yield(GY) and graft efficiency(GE) of the grafted MCC were calculated with the simple equations by the weight balance method. The double bond of C=O on the grafted MCC surfaces was confirmed by the fourier transform infrared spectroscopy with attenuated total reflection(FT-IT ATR) spectrophotometer. After grafting, the degree of crystallinity of cellulose powders was decresed by judging from x-ray diffraction(XRD) data. Scanning electron microscope(SEM) photos showed the only solvent and CAN solution could change the roughness of MCC powders and the effect of powder dispersions in composite matrix. The tensile strength of MCC/CTA composite films was decreased with increase of MCC powder contents. When 5% grafted MCC was added, the tensile strength of grafted MCC/CTA composite films was increased from 82.3 MPa to 97.2 MPa. The thermal property of powders was also analyzed by the thermogravimetric analysis(TGA).

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

Scientific Analysis of National Registered Cultural Heritage 666, Korea's First Fighters used during the Korean War (F-51D) (등록문화재 제666호 F-51D 무스탕 전투기 과학적 분석)

  • Kang, Hyunsam;Jang, Hanul;Kim, Soochul;Lee, Uicheon
    • Conservation Science in Museum
    • /
    • v.23
    • /
    • pp.71-90
    • /
    • 2020
  • The scientific analysis of a 'F-51D Mustang Fighter'(Registered Cultural Heritage 666), one of the War Memorial of Korean collections, was carried out. The paint layer and canopy were discolored due to a constant outdoor exhibit. The results obtained through the scientific survey and analysis processes were intended to be used as basic data for the future dismantling and restoration of the fighter. The analysis results for the pigment components have confirmed red oxide of iron, Fe2O3 organic pigments, such as Cobalt Blue, phthalocyanine blue, etc., yellow PbCrO4, white TiO2, black Fe3O4, and gray Fe3O4 + TiO2. It has been also confirmed that Alkyd resin was mainly used for painting. The fighter's canopy was Poly methyl methacrylate(PMMA), and Al was detected as the main component of the fighter body, wings, and tails.