• Title/Summary/Keyword: FSI(Fluid-Structure Interaction)

Search Result 234, Processing Time 0.032 seconds

Seismic Fragility Analysis of Ground Supported Horizontal Cylindrical Tank (수평원통형 저장탱크의 지진취약도 해석)

  • Chaulagain, Nabin Raj;Sun, Chang-Ho;Kim, Ick-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.7
    • /
    • pp.145-151
    • /
    • 2019
  • The fragility analyses for the partially filled horizontal cylindrical tank having a flexible wall were conducted to evaluate seismic performance. An equivalent simplified model with two lumped masses representing to impulsive and convective masses was used to represent the liquid storage system. This simplified model was validated by comparing its time history analysis results with the 3D FSI model results. The horizontal tank was analyzed under bi-directional excitations. Seismic fragility curves for the stability were developed in transverse and longitudinal directions. Fragility curves show that seismic damage for the horizontal storage system is more susceptible in the transverse direction.

Analysis of Flexible Media: II. Including Aerodynamic Effect (유연매체의 거동해석: II. 공기의 영향을 고려한 해석)

  • Jee, Jung-Geun;Jang, Yong-Hoon;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1335-1340
    • /
    • 2007
  • The media transport systems, such as printers, copy machines, facsimiles, ATMs, cameras, etc. have been widely used and being developed rapidly. In the development of those sheet-handling machineries, it is important to predict the static and dynamic behavior of the sheet with a high degree of reliability because the sheets are fed and stacked at such a high speed. Flexible media are very thin, light and flexible, so they behave in geometric nonlinearity with large displacement and large rotation but small strain. In the flexible media analysis, aerodynamic effect from the surrounding air must be included because any small force can make large deformation. In this paper, surrounding air was modeled by incompressible Navier-Stokes flow and an arbitrary Lagranigan-Eulerian(ALE) finite element method with automatic mesh-updating technique was formulated for large domain changes. In the numerical simulations, the results with consideration of the air fast decayed and converged into static results while the results without considering air oscillated continuously.

  • PDF

Effect of Check Valve Characteristics on Flow Rate of the Small Piezoelectric-Hydraulic Pump (체크밸브 특성이 소형 압전유압펌프 유량에 미치는 효과)

  • Nguyen, Anh Phuc;Hwang, Jai-Hyuk;Hwang, Yong-Ha;Bae, Jae-Sung
    • Journal of Aerospace System Engineering
    • /
    • v.12 no.5
    • /
    • pp.54-68
    • /
    • 2018
  • The objective of this study is to analyze the effect of dynamic characteristics of the check valve applied to the small piezoelectric-hydraulic pumps on flow rate formation. The flow rate of the piezoelectric-hydraulic pump is a key factor in the formation of the load pressure to operate the brake system. At this time, the natural frequency of the check valve operating in the fluid has a great influence on the formulation of the flow rate of the piezoelectric-hydraulic pump. In addition, the natural frequency of the check valve is affected by the gap between the check valve and the pump seat. In this study, the natural frequency of the check valve according to the gap between the check valve and the pump seat was calculated through the fluid-structure interaction analysis. The flow rate obtained from the simulation result was verified by comparing it with the result from the flow rate experiment using the developed piezoelectric-hydraulic pump.

Analysis of Two-Way Fluid-Structure Interaction and Local Material Properties of Brazed Joints for Estimation of Mechanical Integrity (관형 열교환기의 기계적 건전성 확보를 위한 유체-고체 연성해석과 브레이징 접합부의 국부적 물성분포 분석)

  • Kang, Seok Hoon;Park, Sang Hu;Min, June Kee;Jeong, Ho Sung;Son, Chang Min;Ha, Man-Young;Cho, JongRae;Kim, Hyun Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2013
  • Recent years have witnessed a strong need for eco-friendly and energy-efficient systems owing to global environmental problems. A heat exchanger is a well-known mechanical rig that has long been used in many energy systems. The use of a heat exchanger in an airplane engine has been attempted. In this case, the heat exchanger should be redesigned to be compact, lightweight, and highly reliable, and the issue of mechanical integrity gains importance. Therefore, in this study, we proposed a method for evaluating the mechanical integrity of a tube-type heat exchanger. A U-shaped single tube was used as an example, and its behavior and stress distribution were studied using fluid-structure interaction (FSI) analysis.

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Investigation of a Thermal Stress for the Unit Cell of a Solid Oxide Fuel Cell (고체산화물 연료전지 단위셀의 열응력에 관한 연구)

  • Kim, Young-Jin;Park, Sang-Kyun;Roh, Gill-Tae;Kim, Mann-Eung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.414-420
    • /
    • 2011
  • Thermal stress analysis of a planar anode-supported SOFC considering electrochemical reactions has been performed under operating conditions where average current density varies from 0 to 2000 $A/m^2$. For the case of the 2000 $A/m^2$ operating condition, Structural stress analysis based on the temperature distributions obtained from the CFD analysis of the unit cell has also been done. From this one way Fluid-Structure Interaction(FSI) analysis, Maximum Von-Mises stress under negligible temperature gradient fields occurs when cell components are perfectly bonded. The maximum stress of the electrolyte, cathode and anode in a unit cell SOFC is 262.58MPa, 28.55MPa and 15.1MPa respectively. The maximum thermal stress is critically dependent on static friction coefficient.

A Fundamental Study on the Vertical-Axis Wind Turbine for Fishing Boat using Numerical Analysis (수치해석을 이용한 어선용 수직축 풍력터빈의 기초연구)

  • Jeong, Kwang-Leol;Lee, Young-Gill;Ha, Yoon-Jin;Kang, Bong Han;Kang, Dae-Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.6
    • /
    • pp.365-372
    • /
    • 2013
  • In this study, the flow characteristics and structural safety of a 500W class vertical-axis wind turbines(VAWT) for a fishing boat are investigated by numerical simulations. Guide vanes to increase the performance of the VAWT are investigated. And the best guide vane in the numerical simulations is applied to the VAWT. Also, modal analyses are performed to find out the natural frequencies of the VAWT, and the resonance safety of the VAWT is evaluated. The structural analysis of the VAWT is carried out by one-way FSI(Fluid Structure Interaction). And the results are used for the evaluation of structural safety according to IEC 61400-1 code. Finally, the possibility of the installation of the VAWT on the wheelhouse of a 9.77ton class fishing boat is checked. The results of the present research could be used as one of the fundamental data to design a VAWT for a fishing boat.

Structural Characteristics Evaluation of the Injection Spiral Blade Used in Small Wind Turbines under Operating Conditions (운전하중 조건에서 소형 풍력 발전기용 사출 나선형 블레이드 구조특성 평가)

  • Gil, Young-Uk;Jo, Young-Kwan;Ji, Ho-Seong;Yang, Hyoung-Keun;Baek, Joon-Ho;Je, Duk-Geun;Jeong, Ho-Seung;Park, Sang-Hu
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.38-46
    • /
    • 2020
  • The purpose is to evaluate the structural characteristics of 750 mm diameter injection spiral blades under various operating conditions. A fiber-glass reinforced polypropylene material was employed to the injection blades, and mechanical tests on two kinds of glass-reinforced polypropylene were performed to evaluate the mechanical properties and to select a suitable candidate material. Also, three kinds of spiral blade geometries were studied to observe the influence of fixing rods between blades. For this, structural analyses were conducted to understand the role of fixing rods under a range of rotating speed. In addition, modal analysis was performed to confirm the resonance in the operating speed range. One-way fluid-structure interaction (FSI) analysis was carried out to know its mechanical integrity under dangerous wind speed conditions. Through this work, the structural characteristics of the proposed spiral blade geometries were studied under various operating conditions, and the requirements of mechanical properties of blades were determined.

A Study of Fluid Structure Interaction Analysis and Coating Characteristics of a Two-stage Pressure Reduction Hydrogen Regulator (2단 감압 수소레귤레이터의 연성해석 및 도금특성에 관한 연구)

  • Song, Jae-Wook;KIM, Seung-Mo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.37-44
    • /
    • 2021
  • In this study, shape design and material selection were carried out for a two-stage pressure-reducing regulator to compensate for the shortcomings of a one-stage mechanical decompression regulator. The shape of the contact surface of the depressurization unit was considered, material was selected, and the shape was designed to compensate for the pulsation and slow response through the two-stage decompression and to solve the problem of high pressure deviation. In terms of airtightness, the deformation amount of TPU showed a small amount of displacement of up to 15.82%. Considering the fact that it is applicable to various hydrogen fuel supply systems by securing universality by applying electronic solenoids to the second pressure reduction, magnetic materials were selected. The hydrogen embrittlement and corrosion resistance were evaluated to verify the plating process. Surface corrosion did not occur in only the case of Cr plating. The elongation during the corrosion process was compared using a tensile test, and there was a difference within 2%.

Examinations of Damage Mechanism on the Chuteway Slabs of Spillway under Various Flow Conditions (여수로 방류에 따른 여수로 바닥 슬래브의 손상 메커니즘 검토)

  • Yoo, Hyung Ju;Shin, Dong-Hoon;Lee, Seung Oh
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.251-251
    • /
    • 2021
  • 최근 기후변화로 인한 집중호우의 영향으로 홍수 시 댐으로의 유입량이 설계 당시보다 증가하여 댐의 안전성 확보가 필요하다(감사원, 2003). 이에 건설교통부(2003)는 기후변화와 댐 노후화에 대비하여 치수능력증대사업을 추진하여 댐의 홍수배제능력을 확보하였고, 환경부(2020)에서는 40년 이상 경과된 댐을 대상으로 스마트 안전관리체계 구축을 통한 선제적 보수보강, 성능개선 및 자산관리로 댐의 장수명화를 목적으로 댐의 국가안전대진단을 추진하고 있다. 이에 본 연구에서는 댐 시설(여수로)의 노후도 평가 시 활용 될 수 있는 여수로 표면손상 원인규명에 대하여 3차원 수치모형(FLOW-3D 및 COMSOL Multiphysics)을 통해 검토하고자 한다. 연구대상 댐은 𐩒𐩒댐으로 지형 및 여수로를 구축하였으며, 계획방류량(200년 빈도) 및 최대방류량(PMF) 조건에서 모의를 수행하였다. 수치모의 계산의 정확도 검토를 위하여 Baffle의 설치를 통하여 시간에 따른 유량의 변화를 설계 값과 비교하였고 오차가 1.0% 이내를 만족하는 것을 확인하였다. 여수로 표면손상의 다양한 원인 중 기존연구(USBR, 2019)를 통하여 공동침식(Cavitation Erosion) 및 수력잭킹(Hydraulic Jacking)에 초점을 두었으며 방류조건 별 공동지수(Cavitation Index)산정을 통하여 공동침식 위험 구간을 확인하였다. 이음부의 균열 및 공동으로 인한 표층부 콘크리트의 탈락현상을 가속화시키는 수력잭킹 검토를 위하여 국부모형을 구축하였고 음압력(Negative Pressure), 정체압력(Stagnation Pressure), 양압력(Uplift Pressure)의 분포를 확인하였다. 최종적으로 COMSOL Multiphysics를 통하여 압력분포에 따른 구조해석을 수행하여 폰 미세스(Von Mises) 등가응력 및 변위를 검토하여 콘크리트의 탈락가능성을 확인하였다. 본 연구는 여수로 공동부 및 균열부에서의 손상메커니즘을 확인할 수 있는 기초적인 연구이지만 향후에는 다양한 지형조건 및 흐름조건에서의 압력분포 분석 및 유체-구조물 상호작용(Fluid-Structure Interaction, FSI)모의를 수행한다면 구조물 노후도 및 잔존수명 평가에 필요한 손상한계함수 도출이 가능할 것으로 기대된다.

  • PDF