• Title/Summary/Keyword: FRP(fiber reinforced plastic)

Search Result 180, Processing Time 0.025 seconds

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Son, C.Y.;Byun, H.I.;Paik, J.S.;Shin, J.Y.;Lee, J.T.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.846-851
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S(Wind turbine System) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program (ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer. For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

  • PDF

An Experimental Study on the Vibrational Characteristics of the Rotor Blade with Fiber Reinforced Plastics (복합재료 FRP로 제작된 Rotor Blade 진동특성 분석에 관한 실험적 연구)

  • Paik, J.S.;Lee, K.S.;Park, J.V.;Lee, J.T.;Son, C.Y.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.11 s.104
    • /
    • pp.1232-1240
    • /
    • 2005
  • The purpose of this paper is that investigates the dynamic behavior characteristic of W.T.S (wind turbine system) and carries out the evaluation analysis during operating W.T.S. To investigate the dynamic behavior characteristic of W.T.S, the experiments to measure vibration of the blade from the attached accelerometer on the flap and edge section of the blade that is one of the most important elements of dynamic characteristic of W.T.S are performed. Natural frequency and mode shape are calculated with commercial program ( ANSYS) using the measured vibration acceleration that receives the signal with F.F.T Analyzer from the accelerometer For validation of these experiments, the finite element analysis is performed with commercial F.E.M program (ANSYS) on the basis of the natural frequency and mode shape. The results indicate that experimental values have good agreements with the finite element analysis.

Experimental study on hollow GFRP-confined reinforced concrete columns under eccentric loading

  • B.L. Chen;H.Y. Gao;L.G. Wang
    • Steel and Composite Structures
    • /
    • v.52 no.4
    • /
    • pp.451-460
    • /
    • 2024
  • Hollow reinforced concrete columns confined with GFRP tubes (GRCH) are composite members composed of the outer GFRP tube, the PVC or other plastic tube as the inner tube, and the reinforced concrete between two tubes. Because of their high ductility, light weight, corrosion resistance and convenient construction, many researchers pay attention to the composite members. However, there are few studies on GRCH members under eccentric compression compared with those under axial compression. Eight hollow columns were tested under eccentric compression, including one axial compression column and seven eccentric compression columns. The failure modes and force mechanisms of GRCH members were analyzed, considering the varying in hollow ratio, reinforcement ratio and eccentricity. The test results showed that configuring steel bars can greatly increase the bearing capacity and ductility of the members. Each component (GFRP tube, concrete, steel bar) had good deformation coordination and the strength of each material could be fully utilized. But for specimens with larger eccentricity ratio (er=0.4) and larger hollow ratio (χ=0.55), the restraining effect of GFRP tube on concrete was significantly decreased.

Structural Design and Installation of Tracking-type Floating PV Generation System (추적식 수상 태양광발전 시스템의 설계 및 시공)

  • Kim, Sun-Hee;Lee, Young-Guen;Seo, Su-Hong;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Composites Research
    • /
    • v.27 no.2
    • /
    • pp.59-65
    • /
    • 2014
  • Most of energy are obtained from oil, coal, and natural gas, most likely, fossil fuel which is limited throughout the world. Recently, high crude oil price, climate change, oil depletion, etc. are main reason to get attention to non-fossil energy including renewable energy in the world. In this study, we studied analysis and design of structure system composed of pultruded fiber reinforced polymer composite (PFRP) which has many advantages such as high specific strength and stiffness, high corrosion resistance and chemical resistance. For the design and construction of floating-type structure, PFRP structural members may be the first choice. Design of tracking-type floating PV generation structure was performed by using the results of the finite element analysis. The structure is fabricated and installed on the water surface. Before the installation of the structure, safety related problems associated with installation and operation are investigated using the finite element simulation and it was found that the structure is safe enough to resist externally applied loads.

Risk of Smoke Occurring in the Combustion of Plastics (플라스틱의 연소 시 발생하는 연기 위험성에 관한 연구)

  • You, Jisun;Chung, Yeong-jin
    • Fire Science and Engineering
    • /
    • v.33 no.1
    • /
    • pp.69-75
    • /
    • 2019
  • In this study, the combustibility of five types of plastic plates, fiber reinforced plastic (FRP), polystyrene (PS), polycarbonate (PC), polypropylene (PP), and polyvinyl chloride (PVC), were tested using a cone calorimeter (ISO 5660). The PVC plate showed a $44.65kW/m^2$ lower peak heat release rate (HRR) and a $30.97kW/m^2$ lower maximum average rate of heat emission than the other four types of plastics, whereas the PS plate showed a $773.44kW/m^2$ higher peak HRR and $399.14kW/m^2$ higher maximum average rate of heat emission. The PC plate and PS plate showed the highest HRR by a maximum of 3.88 times in $CO_{mean}$ yields, while the PS pate and PP plate showed the highest HRR by a maximum 4.88 times in $CO_{2mean}$ yields. In addition, the smoke performance index (SPI) of the PS plate decreased by 74.81%~95.99%; the smoke growth index (SGI) increased to 76%~300%; the smoke intensity (SI) also increased to 917.73% ~ 9607.57%, and the danger of smoke increased. The PS plate was found to have the highest risk of life damage due to smoke on the thermal and smoke sides.

Bond Strength Properties of CFRP Rebar in Concrete According to the Concrete Strength (콘크리트 강도에 따른 CFRP 보강근의 부착강도 특성)

  • Kim, Ho-Jin;Kim, Ju-Sung;Kim, Young-Jin;Choi, Jung-Wook;Park, Sun-Gyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.4
    • /
    • pp.569-577
    • /
    • 2021
  • CFRP(Carbon Fiber Reinforced Plastic) can maintain the same strength even if the diameter is reduced by about one - third, and the weight is about one - twentieth of that of the deformed reinforcing bars that have been used in the construction industry. In particular, it is resistant to corrosion, which is the weakest part of reinf orcing bars, and there is no concern that it will deteriorate over time, It is light and durable, so transportation costs are low and it is convenient for high-rise buildings. This paper experimentally clarifies the adhesive properties of CFRP and clarifies its behavior. That is, bond strength test was conducted with the directness of CFRP and the strength of concrete as experimental variables, and the bond mechanism was clarified experimentally. Furthermore, based on the experimental results, we constructed the bond stress-slip-strain relationship of CFRP compared to the existing deformed reinforcing bars.

Design of PFRP I and Box Shape Compression Members Considering Stress Distribution in the Cross-section (단면 내 응력분포를 고려한 I형 및 Box형 단면의 PFRP 압축재의 설계)

  • Choi, Jin-Woo;Kim, Jae-Wook;Joo, Hyung-Joong;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.2 no.1
    • /
    • pp.15-22
    • /
    • 2011
  • Pultruded fiber reinforced polymeric plastic (PFRP) structural members may be one of attractive alternatives of the structural members in the civil engineering applications because of its many advantageous mechanical properties. However, they have relatively low modulus of elasticity and also cross-sections of structural shapes are composed of thin plate components such as flange and web. Therefore, structural stability is an important issue in the design of pultruded structural compression members. For the design of pultruded structural member under compression, buckling and post-buckling strengths of plate components may be taken into account. In the structural steel design following AISC/LRFD, in addition to the buckling strength, the nonuniform stress distribution in the section is incorporated with a form factor. In this paper, the form factor for the design of PFRP structural member under compression is investigated through the analytical study. Furthermore, the process for the determination of the form factor is suggested.

Research Trend and Product Development Potential of Fungal Mycelium-based Composite Materials (곰팡이 균사체 기반 복합소재의 연구 동향과 제품 개발 가능성)

  • Kim, Da-Song;Kim, Yong-Woon;Kim, Kil-Ja;Shin, Hyun-Jae
    • KSBB Journal
    • /
    • v.32 no.3
    • /
    • pp.174-178
    • /
    • 2017
  • Fungal mycelium-based composite materials (FMBC) are a new biomaterial to replace the existing composite materials. To compete with lightweight, high-performance composite materials represented by fiber-reinforced plastic (FRP), various physical and chemical properties and functionality must be secured. Especially, the composite materials made by using mycelium of mushroom is called mushroom plastic. Currently, Ecovative, Grado Zero Espace and MycoWorks in USA and Europe are launching new products. Products utilizing FMBC can be launched in the market for construction materials, automobile interior materials and artificial leather substitutes. In spite of this high possibility, mass production using FMBC has not yet been reported. This review introduces the FMBC, a material that can replace existing plastics, inorganic building materials and animal skins in an environmentally and economically viable way, and looks at the possibility of future biomaterials by summarizing recent research contents.

Mechanical and Electrochemical Characteristics in Welding with Robot on 6061-T6 Al Alloy for Al Ship (로봇으로 용접한 알루미늄 선박용 6061-T6 합금의 기계적, 전기화학적 특성)

  • Kim, Seong-Jong;Jang, Seok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.313-321
    • /
    • 2009
  • The construction of fiber-reinforced plastic (FRP) boats is decreasing trend since the application of international regulations on the control of marine environmental pollution, which recommended the use of environmentally friendly materials. The aluminum alloy used with material for ship is a superior to FRP. It is environmental friendly, easy to recycle, and provides a high added value to fishing boats. However, the welding for Al alloy materials have many problems, such as deformation by welding heat and effect of the working environment. In this paper, it was carried out welding by robot with welding material of ER5183 and ER5556 on 6061-T6 Al alloy for ship. The mechanical and electrochemical characteristics evaluated for specimen welded by robot. The cathodic polarization trend for the base metal and welding metal showed the effects of concentration polarization due to oxygen reduction and activation polarization due to hydrogen generation. The hardnesses of welding zone and heat affected zone are lower than that of base metal. At the result of tensile test, the specimen welded with ER5183 presented excellent property compared with ER5556.

Nondestructive Evaluation on Strength Characteristic and Damage Behavior of Al 7075/CFRP Sandwich Composite (Al 7075/CFRP 샌드위치 복합재료의 강도 및 손상특성에 대한 비파괴 평가)

  • Lee, Jin-Kyung;Yoon, Han-Ki;Lee, Joon-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2328-2335
    • /
    • 2002
  • A hybrid composite material has many potential usage due to the high specific strength and the resistance to fatigue, when compared to other composite materials such as fiber reinforced plastic(FRP) and metal matrix composite(MMC). However, the fracture mechanism of hybrid composite material is extremely complicated because of the bonding structure of metals and FRP. In this study, Al 7075 sheets and carbon epoxy preprags were used to fabricate the hybrid composite. Recently, nondestructive technique has been used to evaluate the fracture mechanism of these composite materials. AE technique was used to clarify the microscopic damage behavior and failure mechanism of A17075/CFRP hybrid composite. It was found that AE paralneters such as AE event, energy and amplitude were effective to evaluate the failure process of Al 7075/CFRP composite. In addition, the relationship between the AE signal and the characteristics of fracture surface using optical microscope was discussed.