• 제목/요약/키워드: FPSO

검색결과 226건 처리시간 0.024초

Dynamic Analysis of Multiple-Body Floating Platforms Coupled with Mooring Lines and Risers

  • Kim Young-Bok;Kim Moo-Hyun
    • Journal of Ship and Ocean Technology
    • /
    • 제9권1호
    • /
    • pp.11-26
    • /
    • 2005
  • In this study, the program to investigate the multiple body interaction effects between a floating platform and a shuttle tanker considering the coupled effect of hull (FPSO) with mooring lines and risers was developed. The coupled analysis program, which is called WINPOST-MULT using the hydrodynamic analysis results by WAMIT, was made. For the verification of WINPOST-MULT by means of numerical experiments, two multiple-body models of an FPSO-FPSO and an FPSO-shuttle tanker system are adopted. With the FPSO-FPSO model and a two-mass-spring system to idealize two identical bodies for the 100-year storm wave condition in GOM, the numerical simulations were performed to investigate the interaction effects between two identical bodies. For the more reality, the coupled analysis for the FPSO-shuttle tanker model in the tandem arrangement was carried out in the consideration of the environmental condition of the West Africa Sea as a rather mild condition. Through the case studies with interaction effect and without interaction effect by the iteration method and the combined method, it is verified that the program is a very useful tool for the analysis of the interaction problem of multiple-body system and the coupled problem of the hull/mooring/riser.

Parametric optimization of FPSO hull dimensions for Brazil field using sophisticated stability and hydrodynamic calculations

  • Lee, Jonghun;Kim, Byung Chul;Ruy, Won-Sun;Han, Ik Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.478-492
    • /
    • 2021
  • In this study, hull dimensions of an FPSO were optimized to maximize its operability at Brazil field. In contrast with the previous works which have used simplified models to evaluate some indicators related to stability and hydrodynamic performances of FPSOs for its own optimal design, we developed a generic hull and compartment modeler and sophisticated stability and hydrodynamic calculation modules. With the aid of the developed tools, the hull optimization was performed with initial dimensions of an FPSO originally designed for west Africa field. The optimization results indicated the relative importance of hydrodynamic performances compared with stability performances for the FPSO hull dimensioning by showing that there were 3 active constraints related to them, which were the natural periods of heave and roll and the maximum pitch angle under 1-year return period waves at full load condition. To the author's knowledge, this study is the first attempt to combine altogether the hull and compartment modeling and full set of stability and hydrodynamic calculations precisely to optimize an FPSO's hull dimensions within 30 min. Also, it is worthwhile to mention that the developed methods are generic enough to be applied to all types of ship-shaped offshore platforms.

지지조건에 따른 FPSO 상부 모듈의 구조적 거동에 관한 연구 (A Study on the Structural Behavior of FPSO Topside Module by Support Condition)

  • 장범선;고대은
    • 한국산학기술학회논문지
    • /
    • 제19권11호
    • /
    • pp.18-23
    • /
    • 2018
  • FPSO는 원유의 생산을 위한 플랜트가 기능별로 모듈화 되어있는 상부구조(topside)와 생산된 원유의 저장 및 상부구조의 지지 기능을 하는 하부구조(hullside)로 구성된다. FPSO 상부 모듈과 이를 지지하는 선체의 구조적 거동은 이들을 연결하는 인터페이스 구조에 따라 달라지며, 인터페이스 구조의 형식은 MSS(Module Support Seat)라고 하는 개별 단위 지지구조들의 조합으로 구성된다. 인터페이스 구조의 형식이 다양하고 이에 따라 FPSO 상부 모듈 구조의 기본 설계가 크게 영향 받으므로 초기 설계 단계부터 다양한 설계 방안을 검토해야 한다. FPSO 상부 모듈의 구조 설계 시에는 선체와의 상호 작용을 고려하여 MSS의 개수, 연결 형식을 결정해야 하고, 구조 강도 검증을 위한 유한요소 모델의 범위, 하중 조건, 경계 조건 등 구조 해석 옵션을 신중히 고려해야 한다. 본 연구에서는 상기 고려 사항들에 대한 비교 조합 Case들을 도출하고 강도 평가를 수행하였으며, 해석 결과의 상세한 고찰을 통해 상부 모듈의 구조적 거동 특성을 비교 분석하였다. 본 연구 결과는 보다 신뢰성 있는 상부 모듈 구조 설계를 위한 좋은 참고 자료가 될 것으로 판단된다.

LNG-FPSO 선박 장비들의 보전활동 지원시스템 개발에 관한 연구 (A Study on the Development of Maintenance System for Equipment of LNG-FPSO Ship)

  • 이순섭;강동훈;이종현;이승준
    • 해양환경안전학회지
    • /
    • 제22권2호
    • /
    • pp.233-239
    • /
    • 2016
  • 본 연구에서는 LNG-FPSO 선박에 탑재되어 있는 장비들의 운영효율을 최대화하기 위한 상태기반유지보수(CBM) 활동을 지원하는 보전시스템을 개발하였다. 개발된 보전시스템에서는 상태기반유지보수를 수행할 주요 장비들을 식별하여 이를 PWBS(Product Work Breakdown Structure)로 정의하였고 식별된 장비들로부터 실시간 수집되는 센서데이터를 이용하여 장비들의 고장분석과 최적 유지 보수 방안을 결정하기 위한 경제성평가 등을 수행하며, 이들을 수행하기 위해 필요한 입출력 데이터를 저장, 관리하는 고장사례 및 유지보수데이터베이스를 구축하였다. 개발시스템의 성능검증을 현재 개발 중인 LNG-FPSO 선박의 Inlet 시스템의 Compressor와 화물창의 Pump Tower 등과 같은 주요 장비들을 대상으로 실시하였고 이를 바탕으로 상태기반유지보수의 가능성을 확인하였다.

A study on the impact load acting on an FPSO bow by steep waves

  • Hong, Sam-Kwon;Lew, Jae-Moon;Jung, Dong-Woo;Kim, Hee-Taek;Lee, Dong-Yeon;Seo, Jong-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Various offshore structures such as FPSO, FSO, Semi-submersible, TLP and Spar are operated to develop offshore oil and gas fields. Most of the offshore structures shall be operated over 20 years under the harsh environments at sites so that the offshore structures should be designed to endure the harsh environments. In this study, the effect of the impact load (so called slapping load) by the steep waves acting on the FPSO bow is investigated through the model test. For measurement of the impact pressures on the frontal area, a bow-shaped panel was fabricated, and installed the pressure sensors on the bow starboard side of the model FPSO. During the model test campaign, the impact load was investigated using the steep waves with $Hs/{\lambda}$ greater than 1/16 of the representative wave condition. Consequently, it is confirmed through the model test that the impact loads acting on the FPSO bow are significantly increased with the steep waves ($Hs/{\lambda}$ > 1/16) than the representative wave conditions of a maximum significant wave height and a pitch forcing period. Therefore, for safe design of North Sea FPSO, it is necessary to consider the steep waves in addition to the representative wave conditions and to be applied as proper structural load. Also, the effect of random seeds in irregular waves should be considered to build the safe FPSO.

Numerical and experimental investigation on the global performance of a novel design of a Low Motion FPSO

  • Peng, Cheng;Mansour, Alaa M.;Wu, Chunfa;Zuccolo, Ricardo;Ji, Chunqun;Greiner, Bill;Sung, Hong Gun
    • Ocean Systems Engineering
    • /
    • 제8권4호
    • /
    • pp.427-439
    • /
    • 2018
  • Floating Production Storage and Offloading (FPSO) units have the advantages of their ability to provide storage and offloading capabilities which are not available in other types of floating production systems. In addition, FPSOs also provide a large deck area and substantial topsides payload capacity. They are in use in a variety of water depths and environments around the world. It is a good solution for offshore oil and gas development in fields where there is lack of an export pipeline system to shore. However due to their inherently high motions in waves, they are limited in the types of risers they can host. The Low Motion FPSO (LM-FPSO) is a novel design that is developed to maintain the advantages of the conventional FPSOs while offering significantly lower motion responses. The LM-FPSO design generally consists of a box-shape hull with large storage capacity, a free-hanging solid ballast tank (SBT) located certain distance below the hull keel, a few groups of tendons arranged to connect the SBT to the hull, a mooring system for station keeping, and a riser system. The addition of SBT to the floater results in a significant increase in heave, roll and pitch natural periods, mainly through the mass and added mass of the SBT, which significantly reduces motions in the wave frequency range. Model tests were performed at the Korea Research Institute of Ships & Ocean Engineering (KRISO) in the fall of 2016. An analytical model of the basin model (MOM) was created in Orcaflex and calibrated against the basin-model. Good agreement is achieved between global performance results from MOM's predictions and basin model measurements. The model test measurements have further verified the superior motion response of LM-FPSO. In this paper, numerical results are presented to demonstrate the comparison and correlation of the MOM results with model test measurements. The verification of the superior motion response through model test measurements is also presented in this paper.

FPSO의 횡요 감쇠 장치에 대한 고찰 (A Study on Roll Reduction Devices for FPSOs)

  • 박인규;양진호;신현수
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2004년도 학술대회지
    • /
    • pp.30-35
    • /
    • 2004
  • Several roll motion reduction devices are reviewed and suggested for the application in FPSO. The firstly suggested solution is the shape of the bilge. The next is a bilge keel. The last suggestion is the ART (anti-rolling tank). Typical U-tube type ART is designed for a FPSO and examined extensively by model experiment. The model section was made of transparent acryl. Free decay test, forced oscillation test and wave test were carried out at a two-dimensional wave flume. U-tube type ART is effective only when the natural periods of ART and ship are same. Therefore, the divided U-tube type ART with split plate is suggested for the reduction of the roll motion of a FPSO over the wide range of the roll period.

  • PDF

DEVS 환경에서 LNG FPSO 액화 공정의 신뢰도 해석 (Reliability Analysis of LNG FPSO Liquefaction Cycle in DEVS Environment)

  • 하솔;구남국;노명일
    • 한국CDE학회논문집
    • /
    • 제18권2호
    • /
    • pp.138-147
    • /
    • 2013
  • The liquefaction process system is regarded as primary among all topside systems in LNG FPSO. This liquefaction process system is composed of many types of equipment. LNG equipment on offshore plants has quite different demands on the equipment compared to traditional onshore LNG plants, so the reliability analysis of this process system needs to be performed. This study investigates how DEVS formalism for discrete event simulation can be used to reliability analysis of the liquefaction cycle for LNG FPSO. The reliability analysis method based on DEVS formalism could be better model for reflecting the system configuration than the conventional reliability analysis methods, such as fault tree analysis and event tree analysis.

CFD Simulation about Green Water on a Fixed FPSO in Regular Waves

  • Ha, Yoon-Jin;Nam, Bo Woo
    • Journal of Advanced Research in Ocean Engineering
    • /
    • 제3권4호
    • /
    • pp.174-183
    • /
    • 2017
  • Numerical simulations were performed about the green water problem of a FPSO. Three regular waves in head sea were tested. A rectangular box-shaped FPSO was considered and it is assumed there is a vertical wall on the deck. For the numerical simulations, an open-source CFD code, OpenFOAM, was applied to solve the present problems. Focus is on wave fields around the FPSO, water flows and impact pressures on the deck. For the validation, the present calculation results were compared with the existing experimental of Lee et al. (2012) and Changwon university in KTTC Cooperative Study Report (2015). The statistical values and spatial distribution of the peak pressures are directly compared with the experimental data. Some discussions are made on the effects of the domain breadth on the Green water impact pressure.