• Title/Summary/Keyword: FPD-filters

Search Result 4, Processing Time 0.02 seconds

ON FP-FILTERS AND FPD-FILTERS OF LATTICE IMPLICATION ALGEBRA

  • Lai, Jiajun;Xu, Yang;Chang, Zhiyan
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.653-660
    • /
    • 2008
  • In this paper, we consider the fuzzification of prime filters in Lattice Implication Algebras (briefly, LIAs), and introduce the concepts of fuzzy prime filters (briefly, FP-filters), and we also studied the properties of FP-filters. Finally, we investigate the properties of fuzzy prime dual filters (briefly, FPD-filters) in LIA, and the relations of them are investigated.

  • PDF

A Study on the Visualization of Suzi Mora Defect of FPD Color Filter (FPD용 컬러 필터의 수지 얼룩 결함 형상화에 관한 연구)

  • Kwon, Oh-Min;Lee, Jung-Seob;Park, Duck-Chun;Joo, Hyo-Nam;Kim, Joon-Seek
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.761-771
    • /
    • 2009
  • Detecting defects on FPD (Flat Panel Display) color filter before the full panel is made is important to reduce the manufacturing cost. Among many types of defects, the low contrast blemish such as Suzi Mura is difficult to detect using standard CCD cameras. Even skilled inspectors in the inspection line can hardly identify such defects using bare eyes. To overcome this difficulty, point spectrometer has been used to analyze the spectrum to differentiate such defects from normal color filters. However, scanning ever increasing-size color filters by a point spectrometer takes too long time to be used in real production line. We propose a system using a spectral camera which can be viewed as a line scan camera composed of an array of point spectrometers. Three types of lighting system that exhibit different illumination spectrums are devised together with a calibration method of the proposed spectral camera system. To visualize the defect areas, various processing algorithms to identify and to enhance the small differences in spectrum between defective and normal areas are developed. Experiments shows 85% successful visualization. of real samples using the proposed system.

The Necessity of Resetting the Filter Criteria for the Minimization of Dose Creep in Digital Imaging Systems (디지털 영상 시스템에서 선량 크리프 최소화를 위한 부가 필터 두께 권고 기준의 재설정에 대한 연구)

  • Kim, Kyo Tae;Kim, Kum Bae;Kang, Sang Sik;Park, Ji Koon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.5
    • /
    • pp.757-763
    • /
    • 2019
  • Recently, Following the recent development of flat panel detector with wide dynamic ranges, increasing numbers of healthcare providers have begun to use digital radiography. As a result, filter thickness standards should be reestablished, as current clinical practice requires the use of thicknesses recommended by the National Council on Radiation Protection and Measurements, which are based on information, acquired using conventional analog systems. Here we investigated the possibility of minimizing dose creep and optimizing patient dose using Al filters in digital radiography. The use of thicker Al filters resulted in a maximum 19.3% reduction in the entrance skin exposure dose when medical images with similar sharpness values were compared. However, resolution, which is a critical factor in imaging, had a significant change of 1.01 lp/mm. This change in resolution is thought to be due to the increased amount of scattered rays generated from the object due to the X-ray beam hardening effect. The increase in the number of scattered rays was verified using the scattering degradation factor. However, the FPD, which has recently been developed and is widely used in various areas, has greater response to radiation than analog devices and has a wide dynamic range. Therefore, the FPD is expected to maintain an appropriate level of resolution corresponding to the increase in the scattered-ray content ratio, which depends on filter thickness. Use of the FPD is also expected to minimize dose creep by reducing the exposure dose.

Test Method for Particle Removal Characteristic of Equipment Fan Filter Unit (EFFU) (Equipment Fan Filter Unit (EFFU)의 Particle 제거 성능평가 방법)

  • Lee, Yang-Woo;Ahn, Kang-Ho
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.59-62
    • /
    • 2012
  • This test method covers a procedure for measuring particle removal characteristic of equipment fan filter unit(EFFU) installed inside of semiconductor process equipments, FPD manufacturing equipments and so on. Since EFFU is a combination of air filter and the assembly of fan, motor and frame, the integrity of these parts is very important for the performance of EFFU. So a conventional particle removal test method for air filters is not suitable for EFFU particle removal performance. This test method defines an evaluation method for EFFU which is installed inside an enclosed space to remove particles that are generated inside process equipment. The particle removal performance of EFFUs is usually depending on the performance of filter media and air flow rate. To understand a performance of an EFFU, the filter media characteristic, air flow rate and the integrity of EFFU parts should be considered simultaneously. This test method is intended to demonstrate the system performance of an EFFU and successfully evaluated EFFU performance characteristics.