• 제목/요약/키워드: FP-injective module

검색결과 5건 처리시간 0.016초

DING INJECTIVE MODULES OVER FROBENIUS EXTENSIONS

  • Wang, Zhanping;Yang, Pengfei;Zhang, Ruijie
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.217-224
    • /
    • 2021
  • In this paper, we study Ding injective modules over Frobenius extensions. Let R ⊂ A be a separable Frobenius extension of rings and M any left A-module, it is proved that M is a Ding injective left A-module if and only if M is a Ding injective left R-module if and only if A ⊗R M (HomR(A, M)) is a Ding injective left A-module.

GORENSTEIN FPn-INJECTIVE MODULES WITH RESPECT TO A SEMIDUALIZING BIMODULE

  • Zhiqiang Cheng;Guoqiang Zhao
    • 대한수학회지
    • /
    • 제61권1호
    • /
    • pp.29-40
    • /
    • 2024
  • Let S and R be rings and SCR a semidualizing bimodule. We introduce the notion of GC-FPn-injective modules, which generalizes GC-FP-injective modules and GC-weak injective modules. The homological properties and the stability of GC-FPn-injective modules are investigated. When S is a left n-coherent ring, several nice properties and new Foxby equivalences relative to GC-FPn-injective modules are given.

RINGS AND MODULES CHARACTERIZED BY OPPOSITES OF FP-INJECTIVITY

  • Buyukasik, EngIn;Kafkas-DemIrcI, GIzem
    • 대한수학회보
    • /
    • 제56권2호
    • /
    • pp.439-450
    • /
    • 2019
  • Let R be a ring with unity. Given modules $M_R$ and $_RN$, $M_R$ is said to be absolutely $_RN$-pure if $M{\otimes}N{\rightarrow}L{\otimes}N$ is a monomorphism for every extension $L_R$ of $M_R$. For a module $M_R$, the subpurity domain of $M_R$ is defined to be the collection of all modules $_RN$ such that $M_R$ is absolutely $_RN$-pure. Clearly $M_R$ is absolutely $_RF$-pure for every flat module $_RF$, and that $M_R$ is FP-injective if the subpurity domain of M is the entire class of left modules. As an opposite of FP-injective modules, $M_R$ is said to be a test for flatness by subpurity (or t.f.b.s. for short) if its subpurity domain is as small as possible, namely, consisting of exactly the flat left modules. Every ring has a right t.f.b.s. module. $R_R$ is t.f.b.s. and every finitely generated right ideal is finitely presented if and only if R is right semihereditary. A domain R is $Pr{\ddot{u}}fer$ if and only if R is t.f.b.s. The rings whose simple right modules are t.f.b.s. or injective are completely characterized. Some necessary conditions for the rings whose right modules are t.f.b.s. or injective are obtained.

HOMOLOGICAL PROPERTIES OF MODULES OVER DING-CHEN RINGS

  • Yang, Gang
    • 대한수학회지
    • /
    • 제49권1호
    • /
    • pp.31-47
    • /
    • 2012
  • The so-called Ding-Chen ring is an n-FC ring which is both left and right coherent, and has both left and right self FP-injective dimensions at most n for some non-negative integer n. In this paper, we investigate the classes of the so-called Ding projective, Ding injective and Gorenstein at modules and show that some homological properties of modules over Gorenstein rings can be generalized to the modules over Ding-Chen rings. We first consider Gorenstein at and Ding injective dimensions of modules together with Ding injective precovers. We then discuss balance of functors Hom and tensor.

ON ϕ-(n, d) RINGS AND ϕ-n-COHERENT RINGS

  • Younes El Haddaoui;Hwankoo Kim;Najib Mahdou
    • 대한수학회논문집
    • /
    • 제39권3호
    • /
    • pp.623-642
    • /
    • 2024
  • This paper introduces and studies a generalization of (n, d)-rings introduced and studied by Costa in 1994 to rings with prime nilradical. Among other things, we establish that the ϕ-von Neumann regular rings are exactly either ϕ-(0, 0) or ϕ-(1, 0) rings and that the ϕ-Prüfer rings which are strongly ϕ-rings are the ϕ-(1, 1) rings. We then introduce a new class of rings generalizing the class of n-coherent rings to characterize the nonnil-coherent rings introduced and studied by Bacem and Benhissi.