• Title/Summary/Keyword: FOSM

Search Result 42, Processing Time 0.025 seconds

The Reliability Analysis for Homogeneous Slope Stability Using Stochastic Finite Element Method (확율유한요소법을 이용한 균질 사면의 신뢰성 해석)

  • 조래청;도덕현
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.125-139
    • /
    • 1996
  • This study was performed to provide the design method for soil structure which guarantees proper safety with uncertainty of soil parameters. For this purpose, the effect of uncertainty of soil parameters for slope stability was analyzed by Bishop's simplified method and Monte Carlo simulation(MC). And reliability analysis program, RESFEM, was developed by combining elastic theory, MC, FEM, SFEM, and reliability, which can consider uncertainty of soil parameters. For factor of safety(FS) 1.0 and 1.2 by Bishop's simplified method, the probability of failure(Pf) was analyzed with varying coefficient of variation(c.o.v.) of soil parameters. The Pf increased as c.o.v. of soil parameters increased. This implies that FS is not the absolute index of slope safety, and even if FS is same, it has different Pf according to c.o.v. of soil parameters. The RESFEM was able to express the Pf at each element in slope quantitatively according to uncertainty of soil parameters. The variation of Pf with uncertainty of soil parameters was analyzed by RESFEM, and it was shown that the Pf increased as the c.o.v. of soil parameters increased.

  • PDF

SYSTEM RELIABILITY-BASED EVALUATION OF BRIDGE SYSTEM REDUNDANCY AND STRENGTH (체계신뢰성에 기초한 교량의 시스템여용성 및 저항강도 평가)

  • 조효남;이승재;임종권
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.240-247
    • /
    • 1993
  • The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult especially when the bridges are highly redundant and significantly deteriorated or damaged. This paper is intended to propose a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. It may be emphasized that this approach is very useful for the evaluation of the deterministic system redundancy and reserve strength which are measured in terms of either probabilistic system redundancy factor and reserve factor or deterministic system redundancy factor and reserve factor. The system reliability of bridges is formulated as a parallel-series model obtained from the FAM(Failure Mode Approach) based on the major failure mechanisms. AFOSM and IST methods are used for the reliability analysis of the proposed models. The proposed approach and method for the system redundancy and reserve safety/strength are applied to the safety assessment of actual RC and steel box-girder bridges. The results of the evaluation of reserved system safety or bridge system-strength in terms of the system redundancy and the system safety/strength are significantly different from those of element reliability-based or conventional methods.

  • PDF

A Fuzzy Inference based Reliability Method for Underground Gas Pipelines in the Presence of Corrosion Defects

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik;Ki, Ikjoong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.26 no.5
    • /
    • pp.343-350
    • /
    • 2016
  • Remaining lifetime prediction of the underground gas pipeline plays a key role in maintenance planning and public safety. One of main causes in the pipeline failure is metal corrosion. This paper deals with estimating the pipeline reliability in the presence of corrosion defects. Because a pipeline has uncertainty and variability in its operation, probabilistic approximation approaches such as first order second moment (FOSM), first order reliability method (FORM), second order reliability method (SORM), and Monte Carlo simulation (MCS) are widely employed for pipeline reliability predictions. This paper presents a fuzzy inference based reliability method (FIRM). Compared with existing methods, a distinction of our method is to incorporate a fuzzy inference into quantifying degrees of variability in corrosion defects. As metal corrosion depends on the service environment, this feature makes it easier to obtain practical predictions. Numerical experiments are conducted by using a field dataset. The result indicates that the proposed method works well and, in particular, it provides more advisory estimations of the remaining lifetime of the gas pipeline.

Prognostics for Industry 4.0 and Its Application to Fitness-for-Service Assessment of Corroded Gas Pipelines (인더스트리 4.0을 위한 고장예지 기술과 가스배관의 사용적합성 평가)

  • Kim, Seong-Jun;Choe, Byung Hak;Kim, Woosik
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.4
    • /
    • pp.649-664
    • /
    • 2017
  • Purpose: This paper introduces the technology of prognostics for Industry 4.0 and presents its application procedure for fitness-for-service assessment of natural gas pipelines according to ISO 13374 framework. Methods: Combining data-driven approach with pipe failure models, we present a hybrid scheme for the gas pipeline prognostics. The probability of pipe failure is obtained by using the PCORRC burst pressure model and First Order Second Moment (FOSM) method. A fuzzy inference system is also employed to accommodate uncertainty due to corrosion growth and defect occurrence. Results: With a modified field dataset, the probability of failure on the pipeline is calculated. Then, its residual useful life (RUL) is predicted according to ISO 16708 standard. As a result, the fitness-for-service of the test pipeline is well-confirmed. Conclusion: The framework described in ISO 13374 is applicable to the RUL prediction and the fitness-for-service assessment for gas pipelines. Therefore, the technology of prognostics is helpful for safe and efficient management of gas pipelines in Industry 4.0.

Determination of Resistance Factors for Drilled Shaft Based on Load Test (현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Jung, Sung-Jun;Kwon, Oh-Sung;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.427-434
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions, by comparison most of bedrocks in Korea are weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety(FOS) were selected as 3.0, the target reliability index($\beta_c$) were evaluated about 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factor for dead load and live load are evaluated approximately 1.25 and 1.75 respectively. However, when the target reliability are considered as 3.0, the resistance factors are evaluated as approximately 50% of results when the target reliability index were 2.0.

  • PDF

Estimation of Pile Resistance Factor by CPT Based Pile Capacity (CPT결과를 이용한 항타말뚝 지지력 평가를 위한 저항계수 산정)

  • Kim Dae-Ho;Lee Jun-Hwan;Kim Bum-Joo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.10
    • /
    • pp.113-122
    • /
    • 2005
  • Application of Limit State Design in geotechnical engineering has become world-widely popular. While LRFD code in the North America presents geotechnical load and resistance factors, the values of resistance factors proposed by these methods are still unstable with limited application. CPT has been widely used for the pile design and various methods have been proposed to estimate the bearing capacity of piles. In this paper, resistance factors for representative pile design methods based on CPT results are evaluated. Field pile load test and CPT results were collected and analyzed in order to obtain necessary statistical data and resistance factors. Resistance factors of the base, shaft, and total capacity are estimated. From fisrt order second moment (FOSM) analysis, resistance factors of $0.30{\sim}0.55$ are estimated for total load capacity.

Risk Assessment for a Steel Arch Bridge System Based upon Response Surface Method Compared with System Reliability (체계신뢰성 평가와 비교한 응답면기법에 의한 강재아치교의 위험성평가)

  • Cho, Tae-Jun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.273-279
    • /
    • 2007
  • Probabilistic Risk Assessment considering statistically random variables is performed for the preliminary design of an Arch Bridge. Component reliabilities of girders have been evaluated using the response surfaces of the design variables at the selected critical sections based on the maximum shear and negative moment locations. Response Surface Method (RSM) is successfully applied for reliability analyses lot this relatively small probability of failure of the complex structure, which is hard to be calculated by Monte-Carlo Simulations or by First Order Second Moment method that can not easily calculate the derivative terms in implicit limit state functions. For the analysis of system reliability, parallel resistance system composed of girders is modeled as a parallel series connection system. The upper and lower probabilities of failure for the structural system have been evaluated and compared with the suggested prediction method for the combination of failure modes. The suggested prediction method for the combination of failure modes reveals the unexpected combinations of element failures in significantly reduced time and efforts, compared with the previous permutation method or conventional system reliability analysis method.

Reliability Assessment of Fatigue Crack Propagation using Response Surface Method (응답면기법을 활용한 피로균열진전 신뢰성 평가)

  • Cho, Tae Jun;Kim, Lee Hyeon;Kyung, Kab Soo;Choi, Eun Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.723-730
    • /
    • 2008
  • Due to the higher ratio of live load to total loads of railway bridges, the accumulated damage by cyclic fatigue is significant. Moreover, it is highly possible that the initiated crack grows faster than that of highway bridges. Therefore, it is strongly needed to assess the safety for the accumulated damage analytically. The initiation and growth of fatigue-crack are related with the stress range, number of cycles, and the stiffness of the structural system. The stiffness of the structural system includes uncertainties of the planning, design, construction and maintenance, which varies as time goes. In this study, the authors developed the design and risk assessment techniques based on the reliability theories considering the uncertainties in load and resistance. For the probabilistic risk assessment of crack growth and the remaining life of the structures by the cyclic load of railway and subway bridges, response surface method (RSM) combined with first order second moment method were used. For composing limit state function, the stress range, stress intensity factor and the remaining life were selected as input important random variables to the RSM program. The probabilities of failure and the reliability indices of fatigue life for the considered specimen under cyclic loads were evaluated and discussed.

Partial Safety Factors for Geotechnical Bearing Capacity of Port Structures (항만구조물 지반지지력 산정을 위한 부분안전계수 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon;Kim, Baeck-Oon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.3
    • /
    • pp.156-162
    • /
    • 2010
  • When eccentric or inclined load acts on foundation of the port & harbor structures, partial safety factors of bearing capacity limit state were estimated using reliability analysis. Current Korean technical standards of port and harbor structures recommend to estimate the geotechnical bearing capacity using the simplified Bishop method. In practice, however, simple method of comparing ground reaction resistance with allowable bearing capacity has been mostly used by design engineers. While the simple method gives just one number fixed but somewhat convenient, it could not consider the uncertainty of soil properties depending on site by site. Thus, in this paper, partial safety factors for each design variable were determined so that designers do perform reliability-based level 1 design for bearing capacity limit state. For these, reliability index and their sensitivities were gained throughout the first order reliability method(FORM), and the variability of the random variables was also considered. In order to verify partial safety factors determined here, a comparison with foreign design codes was carried out and were found to be reasonable in practical design.

Determination of Resistance Factors of Load and Resistance Factor Design for Drilled Shaft Based on Load Test (LRFD 설계를 위한 현장타설말뚝의 주면지지력 저항계수 산정)

  • Kim, Seok-Jung;Kwon, Oh-Sung;Jung, Sung-Jun;Han, Jin-Tae;Kim, Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.7
    • /
    • pp.17-24
    • /
    • 2010
  • Load Resistance Factor Design method is used increasingly in geotechnical design world widely and resistance factors for drilled shafts are suggested by AASHTO. However, these resistance factors are determined for intact rock conditions; by comparison, most of bedrocks in Korea have weathered condition, so that applying the AASHTO resistance factors is not reasonable. Thus, this study suggests the proper resistance factors for design of drilled shaft in Korea. The 22 cases of pile load test data from 8 sites were chosen and reliability-based approach is used to analyze the data. Reliability analysis was performed by First Order Second Moment Method (FOSM) applying 4 bearing capacity equations. As a result, when the Factor of Safety (FOS) was selected as 3.0, the target reliability indexes (${\beta}_c$) were evaluated as 2.01~2.30. Resistance factors and load factors are determined from optimization based on above results. The resistance factors ranged between 0.48 and 0.56 and load factors for dead load and live load are evaluated as approximately 1.25 and 1.75 respectively. However, when the target reliabilities are considered as 3.0, the resistance factors are evaluated as approximately 50% of the results when the target reliability index was 2.0.