• Title/Summary/Keyword: FORCE SENSOR

Search Result 1,229, Processing Time 0.032 seconds

Analysis of Magnetic Characteristics for a Noncontact Magnetostrictive Sensor Simultaneously Measuring Rotational Speed and Force (회전속도와 탄성파를 동시에 측정하는 비접촉 자왜형 센서의 자기적 특성 분석)

  • Lee, Ho-Cheol
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.4
    • /
    • pp.418-424
    • /
    • 2009
  • This work is the attempt to give qualitative explanations to complex magnetic phenomena which are observed in the previously proposed magnetostrictive sensor capable of ultrasonic waves and rotational speed measurement. The law of approach is adopted as analysis tool in order to account for some extraordinary output patterns and proved to be effective. The distance between the anhysteretic curve current magnetic state and the variation of anhysteretic curve by stress mainly determine the sensor output shapes and their uniqueness. It is also experimentally verified that the precisely determined bias magnetic field strength can not only remove the unusual output parts but also maximize its sensitivity.

Monitoring of Eccentric Machining Error and Cutting Force Variation using Cylindrical Capacity Spindle Sensor on CNC Turning (CNC선삭시 주축변위센서를 이용한 편심 가공오차와 절삭력 변화특성의 검출)

  • Maeng Heeyoung;Kim Sungdong
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.300-306
    • /
    • 2005
  • This paper presents the methodology for measuring eccentricity of the machined cylindrical part using CCS(cylindrical capacitance spindle sensor) signal in the CNC turning process. We use capacitance type sensor to take full advantage of averaging effect by using large capacitance area to encompass the whole side of a sensor. The intentionally proposed initial eccentricity is applied to the experimental testpieces, and their resultant relationships between CCS orbits and eccentricities are investigated. As a result, the possibility as a automatic detection apparatus for the CNC lathe is considered based on the linearities of CCS signal and magnitude of eccentricity of machined cylindrical surfaces.

  • PDF

Implementation of Gait Pattern Monitoring System Using FSR(Force Sensitive Resistor) Sensor (압력 센서를 이용한 보행 패턴 모니터링 시스템 구현)

  • Kim, Kiwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.20 no.2
    • /
    • pp.56-60
    • /
    • 2021
  • Recently, technologies for internet of things have been rapidly advanced with development of network. Also interest in smart healthcare that informs about motion information of users has been growing. In this paper, a system that is monitoring the weight on both feet by using aduino and FSR(Force Sensitive Resistor) Sensor is implemented. A 4-channel sensor driver module was implemented to measure a more accurate weight value. It is monitoring the weight on both feet by the using an application for either your PC or mobile device. Mobile applications can contribute to reducing human damage by sending messages along with location in emergency situations, such as injuries caused by falls during outdoor activities.

Development of pushing force measuring system for coke oven machines using telemetry method (비 접촉원격 토오크 측정 시스템 개발)

  • 전종학;허윤기;최일섭
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1778-1781
    • /
    • 1997
  • The coke oven plant on a steel works has not, in the past, been regarded as a prime user of modern instrument technology. The reason for this perception may be due to the fact that the basic design of the coke battery has been changed little over the years. The recording and analysis of oven pushing force on a routine basis is seen as a means of monitoring plant operation. A torque sensor is set up at the shaft of the rotor for measuring pushing force. Pushing force data which is communicated form torque sensor to staor by telemetry method are shown on MMI(Man-Machine Interface) screen and stored in the database automatically. Perhaps the most important feature is that is allows a problem oven to be identified at an early stage and for corrective action to be taken before it develops into a refusal to push. In this way the mechanical loads imposed on the battery structlure can be held to a necessary minimum, so helping to prolong its service life.

  • PDF

Basic Study on In-Process Monitoring of B.U.E. using Force Sensor (Force Sensor를 이용한 구성인선의 In-Process 감시에 관한 기초 연구)

  • 원종식;오민석;정윤교
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.200-205
    • /
    • 1996
  • Recently, in order to achieve high flexibility of manufacture, monitoring and control strategies cf a new type have been developed. Since the generation of built-up edge on the cutting tool damages the surface finish of the workpiece, the monitoring system of built-up edge is an important process monitoring. In this study, the analyzing methods of cutting force signal to detect the built-up edge during cutting process are described. The cutting force signals are analyzed using the mean, standard deviation and mean to standard deviation of this cutting signals. We can obtain the guide to detect the built-up edge during turning process.

  • PDF

Estimation of compensatory hypertrophy in lower urinary system using void force measurement (배뇨력 측정을 통한 하부요로계의 보상성기능항진 평가)

  • Jeong, Do-Un;Jeon, Gye-Rok
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.449-456
    • /
    • 2006
  • The purpose of urodynamic investigation is to obtain the information on the function of the urinary system. The aim of this study is to acquire the useful information of lower urinary tract symptom (LUTS) diagnosis through void force signal as noninvasive method. The system which could evaluate the function of compensatory hypertrophy with noninvasive and comfortable method was implemented to measure uroflow and void force during urination. The implemented system composes of the sensor parts, signal conditioning parts and PC monitoring program. For the evaluation of the implemented system, the simulation of control part of the system was performed and the model system for the lower urinary system was designed. The superiority of a measuring characteristic of the implemented system was verified using the model system. From the evaluation of the model system, we have found out that the void force was dependent on the occlusion degree and compensatory hypertrophy significantly.

Cartesian Space Direct Teaching for Intuitive Teaching of a Sensorless Collaborative Robot (센서리스 협동로봇의 직관적인 교시를 위한 직교공간 직접교시)

  • Ahn, Kuk-Hyun;Song, Jae-Bok
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.311-317
    • /
    • 2019
  • Direct teaching is an essential function for collaborative robots for easy use by non-experts. For most robots, direct teaching is implemented only in joint space because the realization of Cartesian space direct teaching, in which the orientation of the end-effector is fixed while teaching, requires a measurement of the end-effector force. Thus, it is limited to the robots that are equipped with an expensive force/torque sensor. This study presents a Cartesian space direct teaching method for torque-controlled collaborative robots without either a force/torque sensor or joint torque sensors. The force exerted to the end-effector is obtained from the external torque which is estimated by the disturbance observer-based approach with the friction model. The friction model and the estimated end-effector force were experimentally verified using the robot equipped with joint torque sensors in order to compare the proposed sensorless approach with the method using torque sensors.

Double-Side Notched Long-Period Fiber Gratings fabricated by Using an Inductively Coupled Plasma for Force Sensing

  • Fang, Yu-Lin;Huang, Tzu-Hsuan;Chiang, Chia-Chin;Wu, Chao-Wei
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1399-1404
    • /
    • 2018
  • This study used an inductively coupled plasma (ICP) dry etching process with a metal amplitude mask to fabricate a double-side notched long-period fiber grating (DNLPFG) for loading sensing. The DNLPFG exhibited increasing resonance attenuation loss for a particular wavelength when subjected to loading. When the DNLPFG was subjected to force loading, the transmission spectra were changed, showing a with wavelength shift and resonance attenuation loss. The experimental results showed that the resonant dip of the DNLPFG increased with increasing loading. The maximum resonant dip of the $40-{\mu}m$ DNLPFG sensor was -26.522 dB under 0.049-N loading, and the largest force sensitivity was -436.664 dB/N. The results demonstrate that the proposed DNLPFG has potential for force sensing applications.

Basic Study on in-Process Monitoring of B.U.E. Using Force Sensor (Force Sensor를 이용한 구성인선의 In-Process 감시에 관한 기초 연구)

  • Won, Jong-Sik;Oh, Min-Seok;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.7
    • /
    • pp.67-72
    • /
    • 1997
  • Recently, in order to achieve high flexibility of manufacture, monitoring and control strategies of a new type have been developed. Since the generation of built-up edge on the cutting tool damages the surface finish of the workpiece, the monitoring system of built-up edge is an important process monitoring. In this study, the analyzing methods of cutting force signal to detect the built-up edge during cutting process are described. The cutting force signals are analyzed using the mean, standard deviation and mean to standard deviation of this cutting signals. We can obtain the guide to detect the built-up edge during turning process.

  • PDF

A Study on the Peg-in-hole of chamferless Parts using Force/Moment/Vision Sensor (힘/모멘트/비전센서를 사용한 챔퍼가 없는 부품의 삽입작업에 관한 연구)

  • Back, Seung-Hyop;Lim, Dong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.119-122
    • /
    • 2001
  • This paper discusses the peg-in-hole task of chamferless parts using force/moment/vision sensors. The directional error occurring during the task are categorized into two cases according to the degree of initial errors, And different Mechanical analysis has been accomplished for each cases. This paper proposes an algorithm which enables to reduce intial directional error using digital Images acquired from hand-eyed vision sensor, And to continue the task even with the large directional error by adjusting the error using digital image processing. The effectiveness of the algorithm has been demonstrated through experimentation using 5-axis robot equipped with a developed controller force/moment sensor and color digital camera on its hand.

  • PDF