• 제목/요약/키워드: FORCE SENSOR

검색결과 1,229건 처리시간 0.047초

30 MN 스트레인 게이지 방식 힘 센서의 제작 및 특성 (Fabrication and Characteristics of 30 MN Strain Gage Type Force Sensor)

  • 강대임;송후근;이정태
    • 센서학회지
    • /
    • 제3권2호
    • /
    • pp.24-32
    • /
    • 1994
  • 힘 증강기법을 이용하여 10 MN 로드셀 3개로 30 MN 힘 센서를 설계 제작하였다. 로드셀은 스트레인 게이지방식으로서 기둥형 감지부로 설계되었으며 오차를 줄이기 위하여 온도보상회로등이 내장되어 있다. 특성실험 결과 제작된 힘 센서의 총오차는 0.1 %이내로 추정되어 4.5 MN 이상의 대용량 재료시험기의 교정 및 시험에 유용하게 사용될 것으로 기대된다.

  • PDF

Force holding control of a finger using piezoelectric actuators

  • Jiang, Z.W.;Chonan, S.;Koseki, M;Chung, T.J.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국제학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.202-207
    • /
    • 1993
  • A theoretical and experimental study is presented for the force holding control of a miniature robotic ringer which is driven by a pair of piezoelectric unimorph cells. In the theoretical analysis, one finger is modeled as a flexible cantilever with a tactile force sensor at the tip and the mate of the finger is a solid beam supposed with sufficient stiffness. Further, the force sensor is modeled by a one-degree-of-freedom, mass-spring system and the output of sensor is then described by the sensor stiffness multiplied by the relative displacement. The problem investigated in this paper is that two typical holding tasks of the human finger are picked up and applied to the robotic finger. One is the work holding a stationary object with a prescribed, time-varying force and the other one is to keep the contacted force constant even if the object is in motion. The simple PID feedback control scheme is used to control the minute gripping force of order 0.01 Newton. It is shown both experimentally and theoretically that the artificial finger with the piezoelectric actuator works well in the minute force holding of the tiny object.

  • PDF

로봇 아크용접 공정제어를 위한 새로운 알고리즘 (A New Algorithm for Control of Robotic Arc Welding Process)

  • 박요창;김일수;박창언;김정식;허업;정영재
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2001년도 춘계학술발표대회 개요집
    • /
    • pp.65-68
    • /
    • 2001
  • The application of a feedback control system in robotic arc welding is becoming more and more demanding than ever before. This requirement arises from the fact that robotic arc welding process needs no manual operator to monitor and manipulate the process parameters and hence a means of controlling the quality of the robotic arc welding process becomes apparent. Arc force sensor employed in this research to monitor the bead geometry of the arc welding process, A relationship between the bead dimension and the arc force distributions was established. Experimental configuration for measurement of arc force was used to quantify the changes in the arc force distributions of the plate being welded. Arc force sensor mounted at the end of the robot wrist was employed to measure the arc force applied to the weld. The sensor information was the used to establish a relationship between welding current and arc force. Arc force sensor have shown to be on of the most sophisticated technique to monitor perturbations that occurred during arc welding process.

  • PDF

광섬유 브래그 격자를 이용한 촉각 힘 센서의 개발 (Development of Tactile Force Sensor using Fiber Bragg Grating)

  • 김만섭;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.811-816
    • /
    • 2004
  • The tactile force sensor was studied using Fiber Bragg Grating (FBG). The FBG is able to multiplex easily and is immune to electromagnetic environment. A sensor frame was designed to a cantilever beam type. Strain of a beam is related with the peak shift of a bragg wavelength. Finite Element Method (FEM) was used for getting an appropriate thickness from 0.2 mm to 0.3 mm thick. FEM results showed that 0.3 mm thick was suitable for the force range 10 N. The force resolutions of 0.039 N and 0.113 N were obtained with optical spectrum analyser and tunable Fabry-Perot filter, respectively.

  • PDF

다축힘센서의 노이즈신호 개선을 위한 신호처리 방법 (Signal Processing Method for Noise Reduction of Multi-Axis Force Sensors)

  • 김용찬;강철구;남현도
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1026-1029
    • /
    • 2003
  • There are always some errors in force sensing of multi-axis force sensors that aggravate sensor performance. Error sources may be classified mainly in two groups. One is structural error due to inaccuracy of sensor body, and the other is error due to noise signals existing in the sensed information. This paper presents a brief review about the principle of multi-axis force sensors, and then a method that can reduce the effect of noise signals. The method is to read digital signals in computer instead of analog voltage signals. We can eliminate the bad effect of electromagnetic waves emitted from computer and of 60 Hz noise emitted from AC source by the proposed method. The proposed method is investigated through experimental demonstration. The experimental results show the proposed method improves the sensor performance significantly.

  • PDF

초탄성 마이크로 그리퍼의 제작 및 압전폴리머 센서를 이용한 센서화 (Fabrication and Sensorization of a Superelastic Alloy Microrobot Gripper using Piezoelectric Polymer Sensors)

  • 김덕호;김병규;강현재;김상민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.251-255
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fine alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

  • PDF

센서화된 초탄성 마이크로그리퍼의 설계, 제작 및 성능평가 (Design, Fabrication, and Performance Evaluation of a Sensorized Superelastic Alloy Microrobot Gripper)

  • 김덕호;김병규;강현재;김상민
    • 대한기계학회논문집A
    • /
    • 제27권10호
    • /
    • pp.1772-1777
    • /
    • 2003
  • This paper presents the design, fabrication, and calibration of a piezoelectric polymer-based sensorized microgripper. Electro discharge machining technology is employed to fabricate super-elastic alloy based micro gripper. It is tested to present improvement of mechanical performance. For integration of force sensor on the micro gripper, the sensor design based on the piezoelectric polymer PVDF film and fabrication process are presented. The calibration and performance test of force sensor integrated micro gripper are experimentally carried out. The force sensor integrated micro gripper is applied to perform fme alignment tasks of micro opto-electrical components. It successfully supplies force feedback to the operator through the haptic device and plays a main role in preventing damage of assembly parts by adjusting the teaching command.

십자형 구조를 가진 6축 힘.토크센서의 설계 (Design of a Six Axis Force-Torque Sensor with a Cross-Shaped Structure)

  • 김도석;윤준호;이종원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.59-64
    • /
    • 2001
  • The necessity of six axis force-torque sensors have been increased in the field of automatic assembly, polishing and deburing using robotic manipulator recently. This paper presents a simple and compact elastic structure design of the six axis force-torque sensor with a cross-shaped structure and the expected deflection value was induced by theoretical method to design a six axis force-torque sensor and then this theoretical method was verified by comparing with the results using the Finite Element Method(FEM).

  • PDF

전자 미트 응용을 위한 유연 압전 충격 센서의 제조와 특성 평가 (Fabrication and Evaluation of a Flexible Piezoelectric Impact Force Sensor for Electronic Mitt Application)

  • 나용현;이민선;조정호;백종후;이정우;박영준;정영훈
    • 센서학회지
    • /
    • 제28권2호
    • /
    • pp.106-112
    • /
    • 2019
  • Flexible impact force sensors composed of piezoelectric PZT/PDMS composite sandwiched between Al/PET films were fabricated and their voltage signal characteristics were evaluated under varying impact forces for electronic mitt applications. The piezoelectric impact force sensor on an ethylene-vinyl acetate (EVA) substrate exhibited an output voltage difference of no greater than 40 mV a periodical impact test in with the impact load was increased by as much as 240 N by a restoration time of 5 s in a five-time experiment, implying good sensing ability. Moreover, the impact force sensor embedded four electronic mitts showed a reliable sensitivity of less than 1 mV/N and good repeatability under 100 N-impact force during a cycle test executed 10,000 times. This indicated that the fabricated flexible piezoelectric impact sensor could be used in electronic mitt applications. However, the relatively low elastic limit of substrate material such as EVA or poly-urethane slightly deteriorated the sensitivity of the impact sensor embedded electronic mitt at over 200 N-impact forces.

주축 변위 센서를 이용한 절삭력 측정에 관한 연구 (A Study on Cutting Force Measurement Using Cylindrical Capacitance-Type Spindle Displacement Sensor)

  • 김일해;박만진;장동영;한동철
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2001년도 춘계학술대회 논문집(한국공작기계학회)
    • /
    • pp.89-94
    • /
    • 2001
  • A cylindrical capacitance-type spindle displacement sensor was designed and tested in the hard turning as a way to develop a sensor that can estimate cutting forces without using a tool dynamometer. The displacement sensor was installed between the face of spindle cover and the chucking element, and measured pure radial motion of the spindle. Ceramic inserts and tool steel workpieceof 65 Rc were used during the hard turning tests. The signals from the sensor showed the same pattern of cutting force variations as those from the tool dynamometer. The research results showed that the developed sensor could be utilized as an effective and cheap on-line sensing device to estimate cutting forces.

  • PDF