• 제목/요약/키워드: FOOT REACTION FORCE

검색결과 130건 처리시간 0.027초

Effects of Joint Mobilization on Foot Pressure, Ankle Moment, and Vertical Ground Reaction Force in Subjects with Ankle Instability

  • Yoon, Na Mi;Seo, Yeon Soon;Kang, Yang-Hoon
    • 한국운동역학회지
    • /
    • 제26권2호
    • /
    • pp.153-159
    • /
    • 2016
  • Objective: The purpose of this study was to investigate the effects of joint mobilization on foot pressure, ankle moment, and vertical ground reaction force in subjects with ankle instability. Method: Twenty male subjects (age, $25.38{\pm}3.62yr$; height, $170.92{\pm}5.41cm$; weight, $60.74{\pm}9.63kg$; body mass index (BMI), $19.20{\pm}1.67kg/m^2$) participated and underwent ankle joint mobilization. Weight-bearing distribution, ankle dorsi/plantar flexion moment, and vertical ground reaction force were measured using a GPS 400 and a VICON Motion System (Oxford, UK), and subsequently analyzed. SPSS 20.0 for Windows was used for data processing and paired t-tests were used to compare pre- and post-mobilization measurements. The significance level was set at ${\alpha}$ = .05. Results: The results indicated changes in weight-bearing, ankle dorsi/plantar flexion moment, and vertical ground reaction force. The findings showed changes in weight-bearing distribution on the left (pre $29.51{\pm}6.31kg$, post $29.57{\pm}5.02kg$) and right foot (pre $32.40{\pm}6.30kg$, post $31.18{\pm}5.47kg$). There were significant differences in dorsi/plantar flexion moment (p < .01), and there were significant increases in vertical ground reaction forces at initial stance (Fz1) and terminal stance (Fz2, p < .05). Additionally, there was a significant reduction in vertical ground reaction force at midstance (Fz2, p < .001). Conclusion: Joint mobilization appears to alter weight-bearing distribution in subjects with ankle instability, with resultant improvements in stability.

댄스스포츠 라틴댄스 룸바 Backward Walk 동작시 지면반력 변인 분석 (Analysis of the Ground Reaction Forces by the Dancesport Rumba Backward Walk Step)

  • 유혜숙;인희교;최인애
    • 한국운동역학회지
    • /
    • 제18권1호
    • /
    • pp.129-135
    • /
    • 2008
  • 본 연구는 댄스스포츠 라틴댄스 룸바 Backward Walk 동작시 지면반력에 어떠한 영향을 미치는가를 규명하기 위해 지면반력기를 이용하여 결과를 도출하였다. 우수선수와 비우수선수간 t-test를 통해 비교하여 오른발의 동작시 수직(Fz)지면반력의 착지와 이지에서 유의한 차이를 보였고, 왼발에서는 수직(Fz), 좌우(Fx), 에서 착지와 수직(Fz), 좌우(Fx) 이지에서 유의차가 나타났다. 우수선수와 비우수선수간의 차이는 오른발에서 수직(Fz) 지면반력 이외 다른 방향에서는 유의차가 나타나지 않았으며, 왼발은 지면반력의 전후(Fy) 이지에서 유의한 차이가 없음이 밝혀졌다. 이는 일반적으로 왼발 운동능력이 트레이닝을 통하여 훈련된 우수선수 집단에서 더 발달되었음을 알 수 있다. 따라서 이러한 지면 반력의 차이를 이해하고, 비우수선수 및 초보자들의 경우 동작의 반복훈련 및 트레이닝을 통하여 양발을 균형 있게 발달시킴으로써 정확한 동작 수행이 도움을 줄 것으로 사료된다.

달리기 시 발의 인체측정학적 변인과 운동역학적 변인의 관계 (The Relationship between Anthropometric Parameters of the Foot and Kinetic Variables during Running)

  • Lee, Young Seong;Ryu, Jiseon
    • 한국운동역학회지
    • /
    • 제29권3호
    • /
    • pp.173-183
    • /
    • 2019
  • Objective: The aim of this study was to investigate the correlation coefficients between anthropometric parameters of the foot and kinetic variables during running. Method: This study was conducted on 21 healthy young adults (age: $24.8{\pm}2.1yes$, height: $177.2{\pm}5.8cm$, body mass: $73.3{\pm}7.3kg$, foot length: $256.5{\pm}12.3mm$) with normal foot type and heel strike running. To measure the anthropometric parameters, radiographs were taken on the frontal and sagittal planes, and determined the length and width of each segment and the navicular height. Barefoot running was performed at a preferred velocity ($3.0{\pm}0.2m/s$) and a fixed velocity (4.0 m/s) on treadmill (Bertec, USA) in order to measure the kinetic variables. The vertical impact peak force, the vertical active peak force, the braking peak force, the propulsion peak force, the vertical force at mid-stance (vertical ground reaction when the foot is fully landed in mid-stance or at the point where the weight was uniformly distributed on the foot) and the impact loading rate were calculated. Pearson's correlation coefficient was used to investigate the relationship between anthropometric variables and kinetical variables. The significance level was set to ${\alpha}=.05$. Results: At the preferred velocity running, the runner with longer forefoot had lower active force (r=-.448, p=.041) than the runner with short forefoot. At the fixed velocity, as the navicular height increases, the vertical force at full landing moment increases (r= .671, p= .001) and as the rearfoot length increases, the impact loading rate decreases (r=- .469, p= .032). Conclusion: There was a statistically significant difference in the length of fore-foot and rearfoot, and navicular height. Therefore it was conclude that anthropometric properties need to be considered in the foot study. It was expected that the relationship between anthropometric parameters and kinetical variables of foot during running can be used as scientific criteria and data in various fields including performance, injury and equipment development.

육상 단거리 100m 수평속도 요인에 기여하는 지면반력분석 (Analysis of ground reaction force contributing to horizontal velocity factors in short distance 100M race)

  • 최수남
    • 한국산학기술학회논문지
    • /
    • 제15권4호
    • /
    • pp.2134-2141
    • /
    • 2014
  • 본 연구는 육상 100m 수평속도 요인에 기여하는 지면반력분석을 하기 위하여 여자 단거리 선수 8명을 대상으로 스타트 블록간의 거리를 세 가지(Bunch Start, Medium Start, Elongated Start)유형으로 8주간 출발에 관여하는 운동역학적 요인을 분석하였다. 최대 수평 지면반력은 단거리 경기 진행방향에 대한 추진력으로 전이되는 요인으로서 기록단축에 중요한 수치라고 볼 수 있다. 분석 결과는 앞쪽에 위치한 왼발에서는 우수그룹은 BS, 비우수그룹은 MS가 지면반발력 힘값이 가장 크게, 뒤쪽에 위치한 오른발에서는 우수, 비우수그룹 모두 MS에서 지면반발력 힘값이 가장 큰 결과를 보였다. 뒷발에 위치한 오른발은 우수그룹의 MS(0.83 BW)에서는 BS에서 추진력으로 전이될 때, 가장 유리한 출발 유형이라고 할 수 있다. 최대 수직 지면반력의 분석 결과는 앞쪽에 위치한 왼발에서는 우수그룹은 ES, 비우수그룹은 BS가 지면반발력 힘값이 가장 크게 나타났고, 뒷쪽에 위치한 오른발에서는 우수그룹은 BS, 비우수그룹은 MS에서 반발력 힘값이 가장 크게 나타났다. 지면 반발력이 크게 되면 초기 수평속도를 빠르게 얻을 수 있을 것으로 사료되며, 결국에는 전방 추진력을 크게 하는 자세나 방법을 찾게 되면 초기 기록의 향상을 가져올 수 있어 기록단축을 할 수 있다.

Kinetics Analysis during Stance Phase of Fore Foot Contact versus Rear Foot Contact in Running

  • Cho, Woong;Han, Jae Woong;Kim, A Young;Park, Sung Kyu;Kim, Hyung Soo
    • 국제물리치료학회지
    • /
    • 제8권1호
    • /
    • pp.1084-1089
    • /
    • 2017
  • The purpose of this study was to compare and analyze the difference of the ankle joint movements during landing. Seven adult males voluntarily participated in the study and the average foot size of the subjects was 269.8 mm. Image analysis equipment and the ground reaction force plate (landing type) was used to measure th kinetic variables. As a result of this study, it was confirmed that the vertical ground reaction force peak point appeared once in the barefoot with forefoot, while two peak points appeared in the barefoot and functional shoe foot with rear foot landing. About ankle angle, fore foot landing ankle angle, the average with bare foot landing was $-10.302^{\circ}$ and the average with functional shoe foot landing was $-2.919^{\circ}$. Also about rear foot landing, ankle angle was $11.648^{\circ}$ with bare foot landing and $15.994^{\circ}$ with functional shoe landing. The fore foot landing, ankle joint force analysis produced 1423.966N with barefoot and 1493.264N with functional shoes. But, the rear foot landing, ankle joint force analysis produced 1680.154N with barefoot and 1657.286N with functional shoes. This study suggest that the angle of ankle depends on the landing type and bare foot running/functionalized shod running, and ankle joint forces also depends on landing type.

The Effects of the Foot Types and Structures of the Inner Arch Support Bands on Ground Reaction Force Variables and Sensations during 2nd Vertical Ballet Jump

  • Kim, Juhyun;Yi, Kyungock
    • 한국운동역학회지
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2017
  • Objective: The purpose of this research was to establish the differences of ground reaction force variables and sensations according to the foot types and the structures of the inner arch support band during $2^{nd}$ vertical ballet jump. Method: 12 Female ballet majors in their twenties who have danced for more than 10 years and had no injuries were selected for this research. Independent variables consist of the foot type (pes rectus, pes planus) and the structure of the inner arch support band (no band, x-shaped, linear shaped). Dependent variables consist of ground reaction force variables and relative wearing sensation. Results: The impact decreased the most when x-shaped bands were used on pes rectus and rigid pes planus. When linear-shaped bands were used on flexible pes planus, the impact decreased. Conclusion: The bands also helped reduce the impact on pes rectus. Furthermore, it is clear that according to the foot type, the impact reducing band structures perform differently. The inner arch support bands were necessary for jump training for any foot type.

인간형 로봇의 지능형 발의 발가락 및 뒤꿈치 힘센서 개발 (Development of Force Sensors of Toes and Heel for Humanoid Robot's Intelligent Foot)

  • 김갑순
    • 한국정밀공학회지
    • /
    • 제27권10호
    • /
    • pp.61-68
    • /
    • 2010
  • In order to let the humanoid robot walk on the uneven terrains, the robot's foot should have the similar structure and function as human's. The intelligent foot should be made up of toes and heel. When it walks on the uneven terrains, the foot's sole senses the force and adjusts foot's position before robot losing his balance. In this paper, the force sensors of robot's intelligent foot for having the similar structure and function like human are developed. The heel 3-axis force/moment sensor and toe force sensors for humanoid robot's intelligent foot is developed, and the characteristic tests of them are carried out. As a result of characteristic test, the interference error of the heel 3-axis force/moment sensor is less than 2.2%. It is thought that the developed force sensors could be used to measure the reaction forces which is applied the toes and the heel of a humanoid robot.

엘리트 야구 선수의 타격 특성 연구 (The study of batting characteristics in elite baseball players)

  • 이영석
    • 한국운동역학회지
    • /
    • 제13권1호
    • /
    • pp.173-184
    • /
    • 2003
  • The purpose of this study was to investigate the batting characteristics in elite baseball players. Seven skilled collegiate players hit the ball which was thrown by a pitching machine linearly and strongly to the center of the field. Time, velocity, angle and pound reaction force variables were measured by using high-speed video cameras and pound reaction force analyzer. The results were as follows: 1. The elite players finished their stride performance in a short time and they stayed longer in a swing phase. The increases in the range of trunk rotation were associated with the delay of the swing phase. 2. The 'take-back' phenomenon in the trunk was showed after the stride phase. 3. The down swing demonstrated powerful line drives. 4. Equivalent body weights were placed on both feet during the ready phase. 95% of the body weights were moved to the rear foot during the stride phase, whereas the body weights were driven to the front foot during the swing phase. 95% of the body weights were placed on the front foot at impact.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.