• Title/Summary/Keyword: FOM performance

Search Result 43, Processing Time 0.028 seconds

Design of Regulated Low Phase Noise Colpitts VCO for UHF Band Mobile RFID System (UHF 대역 모바일 RFID 시스템에 적합한 저잡음 콜피츠 VCO 설계)

  • Roh, Hyoung-Hwan;Park, Kyong-Tae;Park, Jun-Seok;Cho, Hong-Gu;Kim, Hyoung-Jun;Kim, Yong-Woon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.8
    • /
    • pp.964-969
    • /
    • 2007
  • A regulated low phase noise differential colpitts VCO(Voltage Controlled Oscillator) for mobile RFID system is presented. The differential colpitts VCO meets the dense reader environment specifications. The VCO use a $0.35{\mu}m$ technology and achieves tuning range $1.55{sim}2.053 GHz$. Measuring 910 MHz frequency divider output, phase noise performance is -106 dBcMz and -135dBc/Hz at 40 kHz and 1MHz offset, respectively. 5-bit digital coarse-tuning and accumulation type MOS varactors allow for 28.2% tuning range, which is required to cover the LO frequency range of a UHF Mobile RFID system, Optimum design techniques ensure low VCO gain(<45 MHz/V) for good interoperability with the frequency synthesizer. To the author' knowledge, this differential colpitts VCO achieves a figure of merit(FOM) of 1.93dB at 2-GHz band.

Enhanced Electrical and Optical Properties of IWO Thin Films by Post-deposition Electron Beam Irradiation (증착 후 전자빔 조사에 따른 IWO 박막의 전기적, 광학적 특성 개선 효과)

  • Jae-Wook Choi;Sung-Bo Heo;Yeon-Hak Lee;Daeil Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.298-302
    • /
    • 2023
  • Transparent and conducting tungsten (W) doped indium oxide (IWO) thin films were deposited on the glass substrate by using RF magnetron sputtering and then electron irradiation was conducted to investigate the effect of electron irradiation on the optical and electrical properties of the films. The electron irradiated films showed three x-ray diffraction peaks of the In2O3 (222), (431) and (046) planes and the full width at half maximum values are decreased as increased electron irradiation energy. In the atomic force microscope analysis, the surface roughness of as deposited films was 1.70 nm, while the films electron irradiated at 700 eV, show a lower roughness of 1.28 nm. In this study, the figure of merit (FOM) of as deposited films is 2.07 × 10-3-1, while the films electron irradiated at 700 eV show the higher FOM value of 5.53 × 10-3-1. Thus, it is concluded that the post-deposition electron beam irradiation is the one of effective methods to enhance optical and electrical performance of IWO thin films.

Image Quality and Lesion Detectability of Lower-Dose Abdominopelvic CT Obtained Using Deep Learning Image Reconstruction

  • June Park;Jaeseung Shin;In Kyung Min;Heejin Bae;Yeo-Eun Kim;Yong Eun Chung
    • Korean Journal of Radiology
    • /
    • v.23 no.4
    • /
    • pp.402-412
    • /
    • 2022
  • Objective: To evaluate the image quality and lesion detectability of lower-dose CT (LDCT) of the abdomen and pelvis obtained using a deep learning image reconstruction (DLIR) algorithm compared with those of standard-dose CT (SDCT) images. Materials and Methods: This retrospective study included 123 patients (mean age ± standard deviation, 63 ± 11 years; male:female, 70:53) who underwent contrast-enhanced abdominopelvic LDCT between May and August 2020 and had prior SDCT obtained using the same CT scanner within a year. LDCT images were reconstructed with hybrid iterative reconstruction (h-IR) and DLIR at medium and high strengths (DLIR-M and DLIR-H), while SDCT images were reconstructed with h-IR. For quantitative image quality analysis, image noise, signal-to-noise ratio, and contrast-to-noise ratio were measured in the liver, muscle, and aorta. Among the three different LDCT reconstruction algorithms, the one showing the smallest difference in quantitative parameters from those of SDCT images was selected for qualitative image quality analysis and lesion detectability evaluation. For qualitative analysis, overall image quality, image noise, image sharpness, image texture, and lesion conspicuity were graded using a 5-point scale by two radiologists. Observer performance in focal liver lesion detection was evaluated by comparing the jackknife free-response receiver operating characteristic figures-of-merit (FOM). Results: LDCT (35.1% dose reduction compared with SDCT) images obtained using DLIR-M showed similar quantitative measures to those of SDCT with h-IR images. All qualitative parameters of LDCT with DLIR-M images but image texture were similar to or significantly better than those of SDCT with h-IR images. The lesion detectability on LDCT with DLIR-M images was not significantly different from that of SDCT with h-IR images (reader-averaged FOM, 0.887 vs. 0.874, respectively; p = 0.581). Conclusion: Overall image quality and detectability of focal liver lesions is preserved in contrast-enhanced abdominopelvic LDCT obtained with DLIR-M relative to those in SDCT with h-IR.

Linearity-Distortion Analysis of GME-TRC MOSFET for High Performance and Wireless Applications

  • Malik, Priyanka;Gupta, R.S.;Chaujar, Rishu;Gupta, Mridula
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.169-181
    • /
    • 2011
  • In this present paper, a comprehensive drain current model incorporating the effects of channel length modulation has been presented for multi-layered gate material engineered trapezoidal recessed channel (MLGME-TRC) MOSFET and the expression for linearity performance metrics, i.e. higher order transconductance coefficients: $g_{m1}$, $g_{m2}$, $g_{m3}$, and figure-of-merit (FOM) metrics; $V_{IP2}$, $V_{IP3}$, IIP3 and 1-dB compression point, has been obtained. It is shown that, the incorporation of multi-layered architecture on gate material engineered trapezoidal recessed channel (GME-TRC) MOSFET leads to improved linearity performance in comparison to its conventional counterparts trapezoidal recessed channel (TRC) and rectangular recessed channel (RRC) MOSFETs, proving its efficiency for low-noise applications and future ULSI production. The impact of various structural parameters such as variation of work function, substrate doping and source/drain junction depth ($X_j$) or negative junction depth (NJD) have been examined for GME-TRC MOSFET and compared its effectiveness with MLGME-TRC MOSFET. The results obtained from proposed model are verified with simulated and experimental results. A good agreement between the results is obtained, thus validating the model.

Improved fast neutron detection using CNN-based pulse shape discrimination

  • Seonkwang Yoon;Chaehun Lee;Hee Seo;Ho-Dong Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.11
    • /
    • pp.3925-3934
    • /
    • 2023
  • The importance of fast neutron detection for nuclear safeguards purposes has increased due to its potential advantages such as reasonable cost and higher precision for larger sample masses of nuclear materials. Pulse-shape discrimination (PSD) is inevitably used to discriminate neutron- and gamma-ray- induced signals from organic scintillators of very high gamma sensitivity. The light output (LO) threshold corresponding to several MeV of recoiled proton energy could be necessary to achieve fine PSD performance. However, this leads to neutron count losses and possible distortion of results obtained by neutron multiplicity counting (NMC)-based nuclear material accountancy (NMA). Moreover, conventional PSD techniques are not effective for counting of neutrons in a high-gamma-ray environment, even under a sufficiently high LO threshold. In the present work, PSD performance (figure-of-merit, FOM) according to LO bands was confirmed using a conventional charge comparison method (CCM) and compared with results obtained by convolution neural network (CNN)-based PSD algorithms. Also, it was attempted, for the first time ever, to reject fake neutron signals from distorted PSD regions where neutron-induced signals are normally detected. The overall results indicated that higher neutron detection efficiency with better accuracy could be achieved via CNN-based PSD algorithms.

Bandwidth Enhancement of a Broadband Ultrasonic Mosaic Transducer using 48 Tonpilz Transducer Elements with 12 Resonance Frequencies (12 주파수의 48 tonpilz 진동소자를 이용한 광대역 초음파 모자이크 변환기의 대역폭 확장)

  • Lee, Dae-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.3
    • /
    • pp.302-312
    • /
    • 2014
  • This article describes the design and performance characteristics of a broadband ultrasonic mosaic transducer. We focus on the improved bandwidth in the high frequency band of a previously designed broadband ultrasonic transducer (Lee et al., 2014). The improvement in the pulse-echo bandwidth was achieved by employing twelve $2{\times}2$ element subarrays, operating at different resonance frequencies, and utilizing the mosaic array concept. We found that the -6 dB and -12 dB bandwidths of the newly developed broadband ultrasonic mosaic transducer, were up to 155% and 170% of the previously designed model, with a quality factor of 1.71 and 1.25, respectively. The averaged TVR (transmitting voltage response), SRT (receiving sensitivity), and FOM (figure of merit) values in a nearly flat transmitting response band, from 45 to 105 kHz providing a -12 dB bandwith of 60 kHz, were 163.3 dB (re $1{\mu}Pa/V$ at 1 m), -192.8 dB (re $1V/{\mu}Pa$), and -30.9 dB, respectively.

X-band CMOS VCO for 5 GHz Wireless LAN

  • kim, Insik;Ryu, Seonghan
    • International journal of advanced smart convergence
    • /
    • v.9 no.1
    • /
    • pp.172-176
    • /
    • 2020
  • The implementation of a low phase noise voltage controlled oscillator (VCO) is important for the signal integrity of wireless communication terminal. A low phase noise wideband VCO for a wireless local area network (WLAN) application is presented in this paper. A 6-bit coarse tune capacitor bank (capbank) and a fine tune varactor are used in the VCO to cover the target band. The simulated oscillation frequency tuning range is from 8.6 to 11.6 GHz. The proposed VCO is desgned using 65 nm CMOS technology with a high quality (Q) factor bondwire inductor. The VCO is biased with 1.8 V VDD and shows 9.7 mA current consumption. The VCO exhibits a phase noise of -122.77 and -111.14 dBc/Hz at 1 MHz offset from 8.6 and 11.6 GHz carrier frequency, respectively. The calculated figure of merit(FOM) is -189 dBC/Hz at 1 MHz offset from 8.6 GHz carrier. The simulated results show that the proposed VCO performance satisfies the required specification of WLAN standard.

A Millimeter-Wave LC Cross-Coupled VCO for 60 GHz WP AN Application in a 0.13-μm Si RF CMOS Technology

  • Kim, Nam-Hyung;Lee, Seung-Yong;Rieh, Jae-Sung
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.295-301
    • /
    • 2008
  • Recently, the demand on mm-wave (millimeter-wave) applications has increased dramatically. While circuits operating in the mm-wave frequency band have been traditionally implemented in III-V or SiGe technologies, recent advances in Si MOSFET operation speed enabled mm-wave circuits realized in a Si CMOS technology. In this work, a 58 GHz CMOS LC cross-coupled VCO (Voltage Controlled Oscillator) was fabricated in a $0.13-{\mu}m$ Si RF CMOS technology. In the course of the circuit design, active device models were modified for improved accuracy in the mm-wave range and EM (electromagnetic) simulation was heavily employed for passive device performance predicttion and interconnection parasitic extraction. The measured operating frequency ranged from 56.5 to 58.5 GHz with a tuning voltage swept from 0 to 2.3 V. The minimum phase noise of -96 dBc/Hz at 5 MHz offset was achieved. The output power varied around -20 dBm over the measured tuning range. The circuit drew current (including buffer current) of 10 mA from 1.5 V supply voltage. The FOM (Figure-Of-Merit) was estimated to be -165.5 dBc/Hz.

Game Theory based Power Control for OFDM System (게임이론을 이용한 OFDM 시스템의 전력제어)

  • Lee, Ryoung-Kyoung;Cho, Hae-Keun;Ko, Eun-Kyoung;Lim, Yeon-Jun;Hwang, In-Kwan;Song, Myung-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.4A
    • /
    • pp.373-378
    • /
    • 2007
  • In this paper, the Game Theory based power control for OFDM system is studied, which has attained intensive interest as a core artificial intelligent technology for Cognitive Radio and its efficiency is evaluated using performance metrics such as system throughput and fairness. Utility Function for joint user centric and network centric power control is defined and simulation results show that game theory based power control is far better than closed loop power control. The contribution of this paper is to formalize the game theory based power control toward the Cognitive Radio that recognizes and adapts to the radio communication environments.

Design Issues of CMOS VCO for RF Transceivers

  • Ryu, Seong-Han
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.1
    • /
    • pp.25-31
    • /
    • 2009
  • This paper describes CMOS VCO circuit design procedures and techniques for multi-band/multi-standard RF transceivers. The proposed techniques enable a 4 GHz CMOS VCO to satisfy all requirements for Quad-band GSMIEDGE and WCDMA standards by achieving a good trade-off among important specifications, phase noise, power consumption, modulation performance, and chip area efficiency. To meet the very stringent GSM T/Rx phase noise and wide frequency range specifications, the VCO utilizes bond-wire inductors with high-quality factor, an 8-bit coarse tune capbank for low VCO gain(30$\sim$50 MHz/V) and an on-chip $2^{nd}$ harmonic noise filter. The proposed VCO is implemented in $0.13{\mu}m$ CMOS technology. The measured tuning range is about 34 %(3.17 to 4.49 GHz). The VCO exhibits a phase noise of -123 dBc/Hz at 400 kHz offset and -145 dBc/Hz at 3 MHz offset from a 900 MHz carrier after LO chain. The calculated figure of merit(FOM) is -183.5 dBc/Hz at 3 MHz offset. This fully integrated VCO occupies $0.45{\times}0.9\;mm^2$.