• Title/Summary/Keyword: FLOW-THROUGH METHOD

Search Result 2,859, Processing Time 0.035 seconds

The Numerical Study of Flow through Complicated-Channel with the Lattice Boltzmann Equation Method (Lattice Boltzmann Equation 방법을 복잡한 형상의 채널 유동 해석에 적용하기 위한 수치적 연구)

  • Jeong Gl-Ho;Ha Man-Young
    • Journal of the Korean Society of Visualization
    • /
    • v.2 no.1
    • /
    • pp.46-51
    • /
    • 2004
  • This paper deals with the evaluation of several boundary conditions which are commonly used in the lattice Boltzmann equation method. 2-D channel flow(Poiseuille flow) and lid-driven cavity flow was selected as a test problem of this study, because there exist an analytic solution and previous study which could be used for a benchmarking test. It was found that lattice Boltzmann method still needs more considerations of stability and physical consistency, though it could predict the flow patterns both qualitatively and quantitatively.

  • PDF

Optimization of Duct System with a Cross Flow Fan to Improve the Performance of Ventilation (환기 성능 향상을 위한 횡류팬을 이용한 덕트 형상의 최적화)

  • Lee, Sang Hyuk;Kwo, Oh Joon;Hur, Nahmkeon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2013
  • Recently, the duct system with a cross flow fan was used to improve the ventilation in various industrial fields. For the efficient ventilation, it is necessary to design the duct system based on the flow characteristics around the cross flow fan. In the present study, the flow characteristics around a cross flow fan in the ventilation duct were predicted by using the moving mesh and sliding interface techniques for the rotation of blades. To design the duct system with the high performance of ventilation, the CFD simulations were repeated with the revised duct model based on the DOE. With the numerical results of flow rate through the ventilation duct with various geometric parameters, the optimized geometry of ventilation duct to maximize the flow rate was obtained by using the Kriging approximation method. From the performance curves of cross flow fan in the original and optimized models of ventilation duct, it was observed that the flow rate through the optimized model is about 16 percent larger than that through the original model.

Analysis of Two-Dimensional Flow around Blades with Large Deflection in Axial Turbomachine (전향도가 큰 축류터보기계의 블레이드 주위의 유동해석)

  • 원승호;손병진;최상경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.1
    • /
    • pp.229-240
    • /
    • 1991
  • The large camber angle theory of turbomachine blade of compressor has been developed recently for the two-dimensional flow by Hawthorn, et al. However, in the above theory it was assumed that the fluid was incompressible and inviscid, and the blades had no thickness. In this study, the flow in a blade cascade being mounted in parallel fashion with blade of arbitrary thickness is studied in order to determine the effects of the camber angle on the performance characteristic of the blade section under the consideration of compressibility and viscosity of fluid. The panel method is used for potential flow analysis. The flow in the boundary-layer is obtained by solving the integral boundary-layer structure through the laminar, transitional , and turbulent flow using the pressure field determined from the potential flow. And then the viscous-inviscid interaction scheme is used for interaction of these two flows. For the determination of the variation in the outlet fluid angle influenced by deviation in cascade flow, the superposition method which is used for single foil is introduced in this analysis. By the introduction of this method, the effects of the deviation on outlet fluid angle and the resulting fluid angle are made to adjust for oneself through the calculation. As the result of this study, the blade of large camber angle, large incidence angle, large pitch-chord ratio has large viscous and compressible effect than those of small camber angle. Lift force increase as camber angle increases, but above 60.deg. of camber angle, lift force decrease as camber angle increases. But drag force increases linearly with camber angle increases in the entire region.

A Study on Power Flow Method of Radial Distribution System using a measured data from FRTU in Distribution Automation System (배전자동화 시스템의 단말장치(FRTU)로부터 취득되는 데이터를 이용한 방사상 배전계통 조류계산 방법에 관한 연구)

  • Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.286-287
    • /
    • 2015
  • Currently, Studies on improving the reliability of power supply is becoming an important issue because of the increase in demand of the electric power system. Therefore necessity of automation in distribution system is increasing day by day. However, a measured voltage data from FRTU of distribution automation system is incorrect because of installation space limits. Therefore there is a need of system analysis method by considering the characteristics of the distribution system. For a distribution system, applying the power flow method of transmission system has some problems, as distribution is radial system and it has unbalanced load. Therefore power flow by considering the characteristics of the distribution system have been studied. Existing power flow analysis of the distribution system has different methods like direct analysis method, backward/forward sweep method, modified method of newton raphson etc. In this paper, an improved power flow analysis method based on backward/forward sweep method is proposed in order to efficiently operate the distribution automation system. The proposed method of power flow has been verified through the result of case study.

  • PDF

A Study on the using of Havruta Teaching Method in Computer Practice Class (컴퓨터 실습수업에서 하브루타 교수법 효과에 관한 연구)

  • Kim, Changhee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.14 no.4
    • /
    • pp.177-187
    • /
    • 2018
  • The purpose of this study is to investigate the influence of learning flow, learning interest, and academic achievement by dividing the time when class was taught by Havruta. The Havruta teaching method is a traditional Jewish method of learning, with a one-on-one discussion with a partner that has a positive impact on each other. Havruta teaches learners through various perspectives and perspectives, helping them to improve their learning ability by attracting new ideas and solutions. In the computer lab, there is a big difference between the students according to the learner's abilities. Therefore, it is thought that the Havruta teaching method will help the learners who have lost interest in learning and improve the learning ability in the conventional way which does not consider personal abilities. do. In this paper, based on the friendship teaching model of the Havruta teaching style, the experimental group was taught through the Havruta practice and the play. Through the pre- and post-test, the students who taught the class with the help of the verbal method improved the learning flow, the learning interest and the academic achievement.

Numerical Calculation of Flows through Impeller of Centrifugal Compressors by Streamline Curvature Method (유선곡률법에 의한 원심압축기 회전차 내부유동의 수치해석)

  • Kang, S.H.;Shin, Y.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.1
    • /
    • pp.87-96
    • /
    • 1989
  • Flows through impellers of centrifugal compressors are calculated by a streamline curvature method. A method for the exit boundary condition is suggested in the present paper. Flow angles are assumed to be deviated from the blade angle parabolically. The maximum deviation is adjusted for the whole angular momentum to balance with the empirically estimated value by using Stanitz' slip-factor. The present method is verified to reasonably simulate flows through the impeller, when the 3-dimensionality of the flow is not strong. It is also shown that the method can be applied for the design of the splitter in the impeller.

  • PDF

A New Control Volume Finite Element Method for Three Dimensional Analysis of Polymer Flow (고분자 유동의 3차원 해석을 위한 새로운 검사 체적 유한 요소법)

  • 이석원;윤재륜
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.461-464
    • /
    • 2003
  • A new control volume finite element method is proposed for three dimensional analysis of polymer flow. Tetrahedral finite element is employed and co-located interpolation procedure for pressure and velocity is implemented. Inclusion of pressure gradient term in the velocity shape functions prevents the checkerboard pressure field from being developed. Vectorial nature of pressure gradient is considered in the velocity shape function so that velocity profile in the limit of very small Reynolds number becomes physically meaningful. The proposed method was verified through three dimensional simulation of pipe flow problem for Newtonian and power-law fluid. Calculated pressure and velocity field showed an excellent agreement with analytic solutions for pressure and velocity. Driven-cavity problem, which is reported to yield checkerboard pressure filed when conventional finite element method is applied, could be solved without yielding checkerboard pressure field when the proposed control volume finite element method was applied. The proposed method could be successfully applied to the three dimensional mold filling problem.

  • PDF

NUMERICAL SOLUTION OF LAMINAR FLOW OVER SQUARE CYLINDER IN A CHANNEL AND EVALUATION OF LBM SIMULATION RESULTS (사각 실린더 주위의 2차원 층류 유동해석과 LBM 해석 결과의 평가)

  • Kim H.M.
    • Journal of computational fluids engineering
    • /
    • v.10 no.2
    • /
    • pp.30-37
    • /
    • 2005
  • To evaluate LBM we performed the simulation of the unsteady two dimensional flow over a square cylinder in a channel in moderate Reynolds number range, $100\~500$ by using LBM and Fractional-Step method. Frist of all we compared LBM solution of Poiseuille flow applied Farout and periodic boundary conditions with the analytical solution to verify the applicability of the boundary conditions. For LBM simulation the calculation domain was formed by structured 500x100 grids. Prescribed maximum velocity and density inlet and Farout boundary conditions were imposed on the in-out boundaries. Bounceback boundary condition was applied to the channel and the cylinder waifs. The flow patterns and vortex shedding strouhal numbers were compared with previous research results. The flow patterns by LBM were in agreement with the flow pattern by fractional step method. Furthermore the strouhal number computed by LBM simulation result was more accurate than that of fractional step method through the comparison of the previous research results.

Development of a Method for Determining the Instream Flow and Its Application: I. Estimation Method (하천유지유량 결정 방법의 개발 및 적용:I. 산정 방법)

  • 김규호;이진원
    • Water for future
    • /
    • v.29 no.4
    • /
    • pp.161-176
    • /
    • 1996
  • Methods for determining the instream flow in the stream were explored and examined through careful reviews and evaluations of available literatures. Development of the instream flow estimation method is based on the reviewed results and methods which can be used within the acceptable levels.The newly-developed method was tested on the streams which require maintaining some riverine functions, such as the instream flow and river-management flow at the specific channel reach or representative station of the river. The riverine functions mainly considered in this study are the minimum flow, water quality conservation, fish habitat rehabilitation and conservation, riverine aesthetics, river navigation and recreation, and so on. As a result, the newly-developed instream flow estimation method is expected to be used effectively for determining the instream flow, which is necessary in order to maintain the natural or artificial riverine functions.

  • PDF

A Fundamental Study on the Spindle Flow of the Yarn Dyeing (사 염색의 Spindle 유동에 관한 기초적 연구)

  • Kang, Min-Sung;Lee, Ho-June;Noh, Seok-Hong;Chun, Doo-Hwan;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3156-3161
    • /
    • 2007
  • In the field of yarn dyeing, the most generally employed method is a type of package dyeing which uses a package of cheeses stacked on a spindle made of a perforated tube. In order to understand the process of level dyeing, it is essential to perform a study of the porous flow through the spindle for the cheese dyeing method. In this paper, the axisymmetric, incompressible, Navier-Stokes equations are solved for several spindle configurations using a fully implicit finite volume scheme. For investigating the flow patterns through the spindle, porous diameter and porosity is varied in the present study. The computational results show that the total pressure loss depends only on the velocity of inflow regardless of porous diameter and porosity and a large percentage of the mass flow rate through the spindle is discharged at the upside of the spindle. Therefore, it is required to design a new spindle to obtain the level dyeing.

  • PDF