• Title/Summary/Keyword: FGM shells

Search Result 29, Processing Time 0.016 seconds

Bending analysis of doubly curved FGM sandwich rhombic conoids

  • Ansari, Md I.;Kumar, Ajay;Bandyopadhyaya, Ranja
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.469-483
    • /
    • 2019
  • In this paper, an improved mathematical model is presented for the bending analysis of doubly curved functionally graded material (FGM) sandwich rhombic conoids. The mathematical model includes expansion of Taylor's series up to the third degree in thickness coordinate and normal curvatures in in-plane displacement fields. The condition of zero-transverse shear strain at upper and lower surface of rhombic conoids is implemented in the present model. The newly introduced feature in the present mathematical model is the simultaneous inclusion of normal curvatures in deformation field and twist curvature in strain-displacement equations. This unique introduction permits the new 2D mathematical model to solve problems of moderately thick and deep doubly curved FGM sandwich rhombic conoids. The distinguishing feature of present shell from the other shells is that maximum transverse deflection does not occur at its center. The proposed new mathematical model is implemented in finite element code written in FORTRAN. The obtained numerical results are compared with the results available in the literature. Once validated, the current model was employed to solve numerous bending problems by varying different parameters like volume fraction indices, skew angles, boundary conditions, thickness scheme, and several geometric parameters.

Dynamic analysis of viscoelastic FGM shells with porosities on elastic foundation

  • Mehmet Halil Calim;Omer Faruk Capar;Mehmet Bugra Ozbey;Yavuz Cetin Cuma
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.55-72
    • /
    • 2024
  • This study investigates free and damped vibration behaviours of porous functionally graded shells supported by Winkler-Pasternak foundation, considering different geometries. Utilizing a higher-order shear deformation theory, the displacement field is determined. The equations of motion are formulated using Hamilton's principle, and the solutions are obtained Navier's method employing double Fourier series. Parametric studies regarding the effects of porosity, material distribution, elastic foundation, shell geometry and damping are carried out. Results are given in tabular and graphical form for the free and forced vibration analyses, respectively.

Simultaneous resonances of SSMFG cylindrical shells resting on viscoelastic foundations

  • Foroutan, Kamran;Ahmadi, Habib
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.51-73
    • /
    • 2020
  • The present paper investigates the simultaneous resonance behavior of spiral stiffened multilayer functionally graded (SSMFG) cylindrical shells with internal and external functionally graded stiffeners under the two-term large amplitude excitations. The structure is embedded within a generalized nonlinear viscoelastic foundation which is composed of a two-parameter Winkler-Pasternak foundation augmented by a Kelvin-Voigt viscoelastic model with a nonlinear cubic stiffness. The cylindrical shell has three layers consist of ceramic, FGM, and metal. The exterior layer of the cylindrical shell is rich ceramic while the interior layer is rich metal and the functionally graded material layer is located between these layers. With regard to classical shells theory, von-Kármán equation, and Hook law, the relations of stress-strain are derived for shell and stiffeners. The spiral stiffeners of the cylindrical shell are modeled according to the smeared stiffener technique. According to the Galerkin method, the discretized motion equation is obtained. The simultaneous resonance is obtained using the multiple scales method. Finally, the influences of different material and geometrical parameters on the system resonances are investigated comprehensively.

Buckling analysis of functionally graded truncated conical shells under external displacement-dependent pressure

  • Khayat, Majid;Poorveis, Davood;Moradi, Shapour
    • Steel and Composite Structures
    • /
    • v.23 no.1
    • /
    • pp.1-16
    • /
    • 2017
  • This paper is presented to solve the buckling problem of functionally graded truncated conical shells subjected to displacement-dependent pressure which remains normal to the shell middle surface throughout the deformation process by the semi-analytical finite strip method. Material properties are assumed to be temperature dependent, and varied continuously in the thickness direction according to a simple power law distribution in terms of the volume fraction of a ceramic and metal. The governing equations are derived based on first-order shear deformation theory which accounts for through thickness shear flexibility with Sanders-type of kinematic nonlinearity. The element linear and geometric stiffness matrices are obtained using virtual work expression for functionally graded materials. The load stiffness also called pressure stiffness matrix which accounts for variation of load direction is derived for each strip and after assembling, global load stiffness matrix of the shell which may be un-symmetric is formed. The un-symmetric parts which are due to load non-uniformity and unconstrained boundaries have been separated. A detailed parametric study is carried out to quantify the effects of power-law index of functional graded material and shell geometry variations on the difference between follower and non-follower lateral buckling pressures. The results indicate that considering pressure stiffness which arises from follower action of pressure causes considerable reduction in estimating buckling pressure.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Vibrational behavior of exponentially graded joined conical-conical shells

  • Rezaiee-Pajand, Mohammad;Sobhani, Emad;Masoodi, Amir R.
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.603-623
    • /
    • 2022
  • This article is dedicated to predict the natural frequencies of joined conical shell structures made of Functionally Graded Material (FGM). The structure includes two conical segments. The equivalent material properties are found by using the rule of mixture based on Voigt model. In addition, three well-known patterns are employed for distribution of material properties throughout the thickness of the structure. The main objective of the present research is to propose a novel exponential pattern and obtain the related equivalent material properties. Furthermore, the Donnell type shell theory is used to obtain the governing equations of motion. Note that these equations are obtained by employing First-order Shear Deformation Theory (FSDT). In order to discretize the governing system of differential equations, well-known and efficient semi-analytical scheme, namely Generalized Differential Quadrature Method (GDQM), is utilized. Different boundary conditions are considered for various types of single and joined conical shell structures. Moreover, an applicable modification is considered for the continuity conditions at intersection position. In the first step, the proposed formulation is verified by solving some well-known benchmark problems. Besides, some new numerical examples are analyzed to show the accuracy and high capability of the suggested technique. Additionally, several geometric and material parameters are studied numerically.

Nonlinear analysis of two-directional functionally graded doubly curved panels with porosities

  • Kumar, H.S. Naveen;Kattimani, Subhaschandra
    • Structural Engineering and Mechanics
    • /
    • v.82 no.4
    • /
    • pp.477-490
    • /
    • 2022
  • This article investigates the nonlinear behavior of two-directional functionally graded materials (TDFGM) doubly curved panels with porosities for the first time. An improved and effectual approach is established based on the improved first-order shear deformation shell theory (IFSDST) and von Karman's type nonlinearity. The IFSDST considers the effects of shear deformation without the need for a shear correction factor. The composition of TDFGM constitutes four different materials, and the modified power-law function is employed to vary the material properties continuously in both thickness and longitudinal directions. A nonlinear finite element method in conjunction with Hamilton's principle is used to obtain the governing equations. Then, the direct iterative method is incorporated to accomplish the numerical results using the frequency-amplitude, nonlinear central deflection relations. Finally, the influence of volume fraction grading indices, porosity distributions, porosity volume, curvature ratio, thickness ratio, and aspect ratio provides a thorough insight into the linear and nonlinear responses of the porous curved panels. Meanwhile, this study emphasizes the influence of the volume fraction gradation profiles in conjunction with the various material and geometrical parameters on the linear frequency, nonlinear frequency, and deflection of the TDFGM porous shells. The numerical analysis reveals that the frequencies and nonlinear deformations can be significantly regulated by changing the volume fraction gradation profiles in a specified direction with an appropriate combination of materials. Hence, TDFGM panels can overcome the drawbacks of the functionally graded materials with a gradation of properties in a single direction.

Nonlinear Analysis of Functionally Graded Materials Plates and Shells (점진기능재료(FGM) 판과 쉘의 비선형 해석)

  • Han, Sung-Cheon;Lee, Chang-Soo;Kim, Gi-Dong;Park, Weon-Tae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.5
    • /
    • pp.61-71
    • /
    • 2007
  • Navier's and Finite element solutions based on the first-order shear deformation theory are presented for the analysis of through-thickness functionally graded plates and shells. The functionally graded materials are considered: a sigmoid function is utilized for the mechanical properties through the thickness of the isotropic structure which varies smoothly through the plate and shell thickness. The formulation of a nonlinear 9-node Element-based Lagrangian shell element is presented for the geometrically nonlinear analysis. Natural-coordinate-based strains are used in present shell element. Numerical results of the linear and nonlinear analysis are presented to show the effect of the different top/bottom elastic modulus, loading conditions, aspect ratios and side-to-thickness ratios on the mechanical behaviors. Besides, the result according to the variation of the power-law index of isotropic functionally graded structures is investigated.

Large deformation bending analysis of functionally graded spherical shell using FEM

  • Kar, Vishesh Ranjan;Panda, Subrata Kumar
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.661-679
    • /
    • 2015
  • In this article, nonlinear finite element solutions of bending responses of functionally graded spherical panels are presented. The material properties of functionally graded material are graded in thickness direction according to a power-law distribution of volume fractions. A general nonlinear mathematical shallow shell model has been developed based on higher order shear deformation theory by taking the geometric nonlinearity in Green-Lagrange sense. The model is discretised using finite element steps and the governing equations are obtained through variational principle. The nonlinear responses are evaluated through a direct iterative method. The model is validated by comparing the responses with the available published literatures. The efficacy of present model has also been established by demonstrating a simulation based nonlinear model developed in ANSYS environment. The effects of power-law indices, support conditions and different geometrical parameters on bending behaviour of functionally graded shells are obtained and discussed in detail.