• Title/Summary/Keyword: FGF21

Search Result 43, Processing Time 0.037 seconds

EFFECTS OF bFGF AND PDGF-BB ON OSTEOBLAST DIFFERENTIATION OF BONE MARROW-DERIVED MESENCHYMAL STEM CELL IN RAT (bFGF, PDGF-BB가 백서 골수기원 간엽 줄기세포의 조직골세포 분화에 미치는 영향에 관한 연구)

  • Song, Gin-Ah;Choi, Jin-Young
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.32 no.6
    • /
    • pp.495-505
    • /
    • 2006
  • In this study we evaluate the effects of bFGF-BB and PDGF on in vitro proliferation, differentiation and mineralization of mesenchymal stem cells (MSCs) from rat. MSCs were prepared from the bone marrow of 6 or 7-week-old male rats with a technique previously described by Maniatopoulos et al. in 1988. Lineage differentiation to osteogenesis, chondrogenesis and adipogenesis were performed. At first, we characterized the cultured cell on passage 1, 3, 5, 7 with immunocytochemical staining using CD29, 44, 34, 45, ${\alpha}$-SMA and type I collagen. And to study the effects of bFGF and PDGF-BB on proliferation, differentiation and mineralization, we seeded the expanded cell at a density of 6 $6{\times}10^3\;cells/cm^2$ to 100-mm dish for evaluation of cell proliferation and MTT assay was carried out on day 2, 4, 7, 9. We also resuspended the cells with same density $(6{\times}10^3\;cells/cm^2)$ to 24 well plates for subculture. On the following day, the attached cells were exposed to 2.5ng/ml bFGF and/or 25ng/ml PDGF-BB daily during 5 days. The osteocalcin (OC) level was assessed and mineral contents were evaluated with alizarin red S staining on subculture day 2, 7, 14, 21. We identified the mesenchymal stem cell from the bone marrow derived cells of rat through their successful multi-differentiation and stable display of its phenotype. And bFGF and PDGF-BB showed the effect that inhibited osteoblastic differentiation and mineralization mildly in above concentration at in vitro culture. This study was supported by grant 04-2004-0120 from the Seoul National University Hospital Research Fund.

Effects of FGF on Embryonic Development In Vitro in Hanwoo COCs (한우 난구 복합체의 체외발생에 있어서 FGF(Fibroblast Growth Factor)가 미치는 영향)

  • Choi S.H.;Cho S.R.;Kim H.J.;Choe C.Y.;Han M.H.;Son D.S.;Chung Y.G.;H. Hoshi
    • Journal of Embryo Transfer
    • /
    • v.21 no.2
    • /
    • pp.157-162
    • /
    • 2006
  • It is well known that unidentified factors in sera, hormones and growth factors promote the proliferation of granulosa cells and nuclear maturation of bovine COCs (cumulus oocytes complexes) in vitro. Attempts had been developed the simple composition of culture media and similar system to in vivo conditions has been applied. In the present study, we investigated the effect of FGF (fibroblast growth factor) on in vitro maturation and in vitro development of Hanwoo COCs. When the COCs were matured in HPM 199 (Inst. of Functional peptide, Japan) containing 0.1, 1 and 10 ng/ml FGF for 24 hr, maturation rates to metaphase II ($70.0{\sim}75.0%$) were significantly higher (p<0.05) than that of control group (0 ng/ml FGF, 37.5%). When matured COCs with FGF were cultured in maturation medium after in vitro fertilization, developmental rates to blastocysts were 9.5, 0 and 2.9%, respectively, compared to 25.0% of the control group (p<0.05). When the matured COCs with FGF were cultured in HPM 199 (IFP971, Inst. of Functional peptide, Japan) containing 10% FBS, 0.8% BSA or 0.1% PVA (polyvinyl alcohol), the blastocyst formation rates were 12.4, 12.8 and 8.5%, respectively, while the rates of matured COCs with FGF and cultured with IVMD and IVD (Inst. of Functional peptide, Japan) without serum were 38.4% and 34.8%, respectively (p<0.05). These results suggested that FGF is available for in vitro maturation of bovine COCs and is not suitable for in vitro development, but further investigation would be need for finding the synergistic autocrine/paracrine fashion of other growth factors in early bovine embryo development.

Efficient Production of Parthenogenetic Murine Embryonic Stem Cells by the Treatment of Pluripotin (SC-1) (Pluripotin(SC-1) 처리를 통한 단위발생 마우스 배아줄기세포 생산 효율 향상)

  • Kang, Hoin;Roh, Sangho
    • Journal of Embryo Transfer
    • /
    • v.27 no.3
    • /
    • pp.171-174
    • /
    • 2012
  • Various small molecules can be used to control major signaling pathways to enhance stemness and inhibit differentiation in murine embryonic stem cell (mESC) culture. Small molecules inhibiting the fibroblast growth factor (FGF)/ERK pathway can preserve pluripotent cells from stimulation of differentiation. In this study, we aimed to evaluate the effect of pluripotin (SC-1), an inhibitor of the FGF/ERK pathway, on the colony formation of outgrowing presumptive mESCs. After plating the zona pellucida-free blastocyst on the feeder layer, attached cell clumps was cultured with SC-1 until the endpoint of the experiment at passage 10. In this experiment, when the number of colonies was counted at passage 3, SC-1-treated group showed 3.4 fold more mESC colonies when compared with control group. However, after passage 4, there was no stimulating effect of SC-1 on the colony formation. In conclusion, SC-1 treatment can be used to promote mESC generation by increasing the number of early mESC colonies.

Optimization of Human Embryonic Stem Cells into Differentiation of Dopaminergic Neurons in Vitro: II. Genetically Modified Human Embryonic Stem Cells Treated with RA/AA or b-FGF

  • 신현아;김은영;이영재;이금실;조황윤;박세필;임진호
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.75-75
    • /
    • 2003
  • Since the establishment of embryonic stem cell, pluripotency of the cells was known to allow differentiation of the cells into various cell types consisting whole body. Several protocols have been developed to induce expression of specific genes.. However, no precise protocol that will generate a single type of the cells from stem cells has been reported. In order to produce cells suitable for transplantion into brain of PD animal model, which arouse due to a progressive degeneration of dopaminergic neurons in midbrain, human embryonic stem cell (hESC, MB03) was transfected with cDNAs cording for tyrosine hydroxylase (TH). Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by the two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA/ascorbic acid (AA), embryoid bodies (EB, for 4days) derived from hES cells were exposed to RA (10$^{-6}$ M)/AA (50 mM) for 4 days, and were allowed to differentiate in N2 medium for 7, 14, 21, or 28 days. Exp. II) When bFGF was used, neuronal precursor cells were selected for 8 days in N2 medium after EB formation. After selection, cells were expanded at the presence of bFGF (20 ng/ml) for another 6 days followed by a final differentiation in N2 medium for 7, 14, 21 or 28 days. By indirect immunocytochemical studies, proportion of cells expressing NF200 increased rapidly from 20% at 7 days to 70 % at 28 days in RA/AA-treated group, while those cells expressing NF160 decreased from 80% at 7 days to 10% at 28 days upon differentiation in N2 medium. However, in differentiation by RA/AA treatment system, there was a significant increase in proportion of neuron maturity (73%) at day 14 after N2 medium. TH#2/MB03 cells expressing TH are >90% when matured at the absence of either bDNF or TGF-$\alpha$. These results suggested that TH#2/MB03 cells could be differentiated in vitro into mature neurons by RA/AA.

  • PDF

In vitro Neural Cell Differentiation of Genetically Modified Human Embryonic Stem Cells Expressing Tyrosine Hydroxylase (Tyrosine Hydroxylase 유전자가 주입된 인간 배아줄기세포의 체외 신경세포 분화)

  • Shin, Hyun-Ah;Kim, Eun-Young;Lee, Keum-Sil;Cho, Hwang-Yoon;Kim, Yong-Sik;Lee, Won-Don;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.67-74
    • /
    • 2004
  • Objective: This study was to examine in vitro neural cell differentiation pattern of the genetically modified human embryonic stem cells expressing tyrosine hydroxylase (TH). Materials and Methods: Human embryonic stem (hES, MB03) cell was transfected with cDNAs cording for TH. Successful transfection was confirmed by western immunoblotting. Newly transfected cell line (TH#2/MB03) was induced to differentiate by two neurogenic factors retinoic acid (RA) and b-FGF. Exp. I) Upon differentiation using RA, embryoid bodies (EB, for 4 days) derived from TH#2/MB03 cells were exposed to RA ($10^{-6}M$)/AA ($5{\times}10^{-2}mM$) for 4 days, and were allowed to differentiate in N2 medium for 7, 14 or 21 days. Exp. II) When b-FGF was used, neuronal precursor cells were expanded at the presence of b-FGF (10 ng/ml) for 6 days followed by a final differentiation in N2 medium for 7, 14 or 21 days. Neuron differentiation was examined by indirect immunocytochemistry using neuron markers (NF160 & NF200). Results: After 7 days in N2 medium, approximately 80% and 20% of the RA or b-FGF induced Th#2/MB03 cells were immunoreactive to anti-NF160 and anti-NF200 antibodies, respectively. As differentiation continued, NF200 in RA treated cells significantly increased to 73.0% on 14 days compared to that in b-FGF treated cells (53.0%, p<0.05), while the proportion of cells expressing NF160 was similarly decreased between two groups. However, throughout the differentiation, expression of TH was maintained ($\sim$90%). HPLC analyses indicated the increased levels of L-DOPA in RA treated genetically modified hES cells with longer differentiation time. Conclusion: These results suggested that a genetically modified hES cells (TH#2/MB03) could be efficiently differentiated in vitro into mature neurons by RA induction method.

Generation of Isthmic Organizer-Like Cells from Human Embryonic Stem Cells

  • Lee, Junwon;Choi, Sang-Hwi;Lee, Dongjin R;Kim, Dae-Sung;Kim, Dong-Wook
    • Molecules and Cells
    • /
    • v.41 no.2
    • /
    • pp.110-118
    • /
    • 2018
  • The objective of this study was to induce the production of isthmic organizer (IsO)-like cells capable of secreting fibroblast growth factor (FGF) 8 and WNT1 from human embryonic stem cells (ESCs). The precise modulation of canonical Wnt signaling was achieved in the presence of the small molecule CHIR99021 ($0.6{\mu}M$) during the neural induction of human ESCs, resulting in the differentiation of these cells into IsO-like cells having a midbrain-hindbrain border (MHB) fate in a manner that recapitulated their developmental course in vivo. Resultant cells showed upregulated expression levels of FGF8 and WNT1. The addition of exogenous FGF8 further increased WNT1 expression by 2.6 fold. Gene ontology following microarray analysis confirmed that IsO-like cells enriched the expression of MHB-related genes by 40 fold compared to control cells. Lysates and conditioned media of IsO-like cells contained functional FGF8 and WNT1 proteins that could induce MHB-related genes in differentiating ESCs. The method for generating functional IsO-like cells described in this study could be used to study human central nervous system development and congenital malformations of the midbrain and hindbrain.

Erk AND RETINOIC ACID SIGNALING PARTICIPATE IN THE SEGREGATION AND PATTERNING OF FIRST ARCH DERIVED MAXILLA AND MANDIBLE (Erk와 retinoic acid의 제1인구둥 패터닝 조절)

  • Park, Eun-Ju;Tak, Hye-Jin;Park, Eun-Ha;Baik, Jeong-Mi;Zhengguo, Piao;Lee, Sang-Hwy
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.31 no.2
    • /
    • pp.103-115
    • /
    • 2009
  • In vertebrates, the face is mainly formed with neural crest derived neural crest cells by the inherent programs and the interactive environmental factors. Extracellular signaling-regulated kinase (Erk) is one of such programs to regulate the various cellular functions. And retinoic acid (RA) also plays an important role as a regulator in differentiation process at various stages of vertebrate embryogenesis. We wanted to know that the segregation as well as the patterning of maxillary and mandibular structure is greatly influenced by the maxillomandibular cleft (MMC) and the failure of this development may result in the maxillomandibular fusion (syngnathia) or other patterning related disorder. It has been well documented that the epithelium at this cleft region has significant expression of Fibroblast growth factor (Fgf) 8, and it is essential for the patterning of the first arch derived structures. By the morphological, skeletal, cell proliferation and apoptotic, and hybridization analysis, we checked the effects of Erk inhibition and/or RA activation onto MMC and could observe that Erk and RA signaling is individually and synergically involved in the facial patterning in terms of FGF signaling pathway via Barx-l. So RA and Erk signaling work together for the MMC patterning and the segregation of maxilla-mandible by controlling the Fgf-related signaling pathways. And the abnormality in MMC brought by aberrant Fgf signaling may result in the disturbances of maxillary-mandibular segregation.

An Developmental Study of Artificial Skin Using the Alginate Dermal Substrate: Preliminary Report (알지네이트 진피지지체 인공피부 개발: 예비보고)

  • Park, Dae Hwan;Shin, Jeong Im
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.21-30
    • /
    • 2006
  • Alginate, a polymer of guluronic and mannuronic acid, is used as a scaffolding material in biomedical applications. The research was to produce highly-purified alginate from seaweeds and to evaluate the efficacy of alginate as dermal substrate. Our alginate purification method showed a production rate as high as 25%. The purified alginate contained little polyphenol contents and endotoxin, proteins. For study of wound healing, full thickness skin defects were made on the dorsal area of the animal models. And then alginate, fibroblast-growth-factor mixed alginate, alginate-collagen complex, vaseline gauze as control were applied on the wound, respectively, and were evaluated grossly and histopathologically. For biocompatibility test, alginate and alginate-collagen complex discs were implanted on the back of Sprague-Dawly rats. Four weeks after implantation, the animals were examined immunologically against alginate and collagen. Alginate and FGF-mixed alginate, alginate-collagen complex group showed statistically higher percentage of wound contraction and wound healing than control group(p<0.05). Alginate-collagen complex group and FGF-mixed alginate group showed statistically higher percentage of wound healing than alginate group. The experiment of biocompatibility and immunologic reaction against impanted alginate or collagen needs more investigation. Highly-purified alginate from seaweeds by our purification method, showed the effect of wound healing, and addition of FGF or collagen increases the alginate's wound healing effect. It shows the possibility of alginate as a dermal substrate.

Changes of Gelatinolytic Activity in Human Amniotic Membrane-Derived Mesenchymal Stem Cells during Culture in Hepatogenic Medium

  • Park S.;Kook M.;Kim H.
    • Reproductive and Developmental Biology
    • /
    • v.29 no.4
    • /
    • pp.259-267
    • /
    • 2005
  • The present study was conducted to investigate gelatinolytic activities in HAM and to determine whether there are any changes in gelatinolytic activity profiles when the cells are cultured in hepatogenic medium. Placenta was obtained during caesarean section of the volunteers, with informed consent. HAM were isolated from amniotic membrane using collagenase type A HAM were cultured in hepatogenic medium for 3 weeks and the conditioned media were obtained at day 7, 14 and 21. The zymographic pattern of gelatinolytic activity of the HAM did not undergo a change during passages. When the HAM were cultured in a fibronectin-coated dishes in a hepatogenic medium, there was no significant difference of the gelatinase pattern between before and after culture. However, when bFGF was added to the culture, a dramatic increase of 62kDa and 59kDa gelatinases was observed. Interestingly, when ITS instead of FN was present, HAM-conditioned medium also showed a similar increase of both gelatinases. Immunoblotting analysis demonstrated that both 62kDa and 59kDa gelatinases were the active form of MMP-2 resulting from the turnover of MMP-2 proform. Futher study will be necessary to determine the relationship between bFGF and active MMP-2 during hepatogenesis of HAM.