• Title/Summary/Keyword: FGF-5

Search Result 126, Processing Time 0.029 seconds

Cashmere growth control in Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 and decorin genes

  • Jin, Mei;Zhang, Jun-yan;Chu, Ming-xing;Piao, Jun;Piao, Jing-ai;Zhao, Feng-qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.5
    • /
    • pp.650-657
    • /
    • 2018
  • Objective: The study investigated the biological functions and mechanisms for controlling cashmere growth of Liaoning cashmere goat by ovarian carcinoma immunoreactive antigen-like protein 2 (OCIAD2) and decorin (DCN) genes. Methods: cDNA library of Liaoning cashmere goat was constructed in early stages. OCIAD2 and DCN genes related to cashmere growth were identified by homology analysis comparison. The expression location of OCIAD2 and DCN genes in primary and secondary hair follicles (SF) was performed using in situ hybridization. The expression of OCIAD2 and DCN genes in primary and SF was performed using real-time polymerase chain reaction (PCR). Results: In situ hybridization revealed that OCIAD2 and DCN were expressed in the inner root sheath of Liaoning cashmere goat hair follicles. Real-time quantitative PCR showed that these genes were highly expressed in SF during anagen, while these genes were highly expressed in primary hair follicle in catagen phase. Melatonin (MT) inhibited the expression of OCIAD2 and promoted the expression of DCN. Insulin-like growth factors-1 (IGF-1) inhibited the expression of OCIAD2 and DCN, while fibroblast growth factors 5 (FGF5) promoted the expression of these genes. MT and IGF-1 promoted OCIAD2 synergistically, while MT and FGF5 inhibited the genes simultaneously. MT+IGF-1/MT+FGF5 inhibited DCN gene. RNAi technology showed that OCIAD2 expression was promoted, while that of DCN was inhibited. Conclusion: Activation of bone morphogenetic protein (BMP) signaling pathway up-regulated OCIAD2 expression and stimulated SF to control cell proliferation. DCN gene affected hair follicle morphogenesis and periodic changes by promoting transforming growth $factor-{\beta}$ ($TGF-{\beta}$) and BMP signaling pathways. OCIAD2 and DCN genes have opposite effects on $TGF-{\beta}$ signaling pathway and inhibit each other to affect the hair growth.

Evaluation of Spinal Fusion Using Bone Marrow Derived Mesenchymal Stem Cells with or without Fibroblast Growth Factor-4

  • Seo, Hyun-Sung;Jung, Jong-Kwon;Lim, Mi-Hyun;Hyun, Dong-Keun;Oh, Nam-Sik;Yoon, Seung-Hwan
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Objective : In this study, the authors assessed the ability of rat bone marrow derived mesenchymal stem cells (BMDMSCs), in the presence of a growth factor, fibroblast growth factor-4 (FGF-4) and hydroxyapatite, to act as a scaffold for posterolateral spinal fusion in a rat model. Methods : Using a rat posterolateral spine fusion model. the experimental study comprised 3 groups. Group 1 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite only. Group 2 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing $1{\times}10^6/60{\mu}L$ rat of BMDMSCs. Group 3 was composed of 6 animals that were implanted with 0.08 gram hydroxyapatite containing $1{\times}10^6/60{\mu}L$ of rat BMDMSCs and FGF-4 $1{\mu}G$ to induce the bony differentiation of the BMDMSCs. Rats were assessed using radiographs obtained at 4, 6, and 8 weeks postoperatively. After sacrifice, spines were explanted and assessed by manual palpation, high-resolution microcomputerized tomography, and histological analysis. Results : Radiographic, high-resolution microcomputerized tomographic, and manual palpation revealed spinal fusion in five rats (83%) in Group 2 at 8 weeks. However, in Group 1, three (60%) rats developed fusion at L4-L5 by radiography and two (40%) by manual palpation in radiographic examination. In addition, in Group 3, bone fusion was observed in only 50% of rats by manual palpation and radiographic examination at this time. Conclusion : The present study demonstrates that 0.08 gram of hydroxyapatite with $1{\times}10^6/60{\mu}L$ rat of BMDMSCs induced bone fusion. FGF4, added to differentiate primitive $1{\times}10^6/60{\mu}L$ rat of BMDMSCs did not induce fusion. Based on histologic data, FGF-4 appears to induce fibrotic change rather than differentiation to bone by $1{\times}10^6/60{\mu}L$ rat of BMDMSCs.

The Effects of Gamisipjeon-tang on the Skin Regeneration of Deep Second Degree Burns in Mice

  • Yu, Hyun-Jung;Hong, Seung-Ug
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.107-121
    • /
    • 2010
  • Objective: This study aimed to ascertain the curative effects of Gamisipjeon-tang (GST) used for wound healing on the skin regeneration of deep second degree burns in mice. Material & Methods: In vitro, the $I{\kappa}B$ kinase (IKK) mRNA expression, inducible nitric oxide synthase (iNOS) mRNA expression, and cyclooxygenase-2 (COX-2) mRNA expression in the GST concentration from 1 mg/$m{\ell}$ to 10 mg/$m{\ell}$ were measured. In vivo, the mice were divided into four groups : the normal group, the BE group (burn-elicited group, control group), the DC group (Duoderm CGF-treated group after burn elicitation), and the GST group (Gamisipjeon-tang treated group after burn elicitation). To determine the anti-inflammatory effects, nuclear factor (NF)-${\kappa}B$ p65, iNOS, COX-2 positive reaction were measured by immunohistochemistry. To estimate the skin regenerative effects, change of burn area, 5-bromo-2'-deoxyuridine (BrdU), and fibroblast growth factor (FGF) positive reaction were analyzed. Results: In vitro, the iNOS, IKK, COX-2 mRNA expression decreased according to the increase of GST concentration. The significant decrease of COX-2, iNOS, NF-${\kappa}B$ positive reaction were the highest in the GST group, followed by the DC group and the BE group (p<0.05). The diameter of burn area was significantly decreased in the GST group as compared to that in the DC and BE group (p<0.05). The BrdU and FGF positive reaction increased more significantly in the GST group than in the DC group, and more significantly in the DC group than in the BE group on the 3rd and 7th day after burn (p<0.05). FGF positive reaction increased in the BE and DC group, whereas it decreased significantly in the GST group on the 14th day (p<0.05). The BrdU positive reaction increased in the BE group, whereas it decreased significantly in the DC and GST group on the 14th day (p<0.05). Conclusions: This study shows that GST could decrease the inflammatory response and accelerate the skin regeneration as compared to the duoderm CGF in mice with deep second degree burns.

Differential gene expression pattern in brains of acrylamide-administered mice

  • Han, Chang-Hoon
    • Korean Journal of Veterinary Research
    • /
    • v.52 no.2
    • /
    • pp.99-104
    • /
    • 2012
  • The present study was performed to evaluate the relationship between the neurotoxicity of acrylamide and the differential gene expression pattern in mice. Both locomotor test and rota-rod test showed that the group treated with higher than 30 mg/kg/day of acrylamide caused impaired motor activity in mice. Based on cDNA microarray analysis of mouse brain, myelin basic protein gene, kinesin family member 5B gene, and fibroblast growth factor (FGF) 1 and its receptor genes were down-regulated by acrylamide. The genes are known to be essential for neurofilament synthesis, axonal transport, and neuroprotection, respectively. Interestingly, both FGF 1 and its receptor genes were down-regulated. Genes involved in nucleic acid binding such as AU RNA binding protein/enoyl-coA hydratase, translation initiation factor (TIF) 2 alpha kinase 4, activating transcription factor 2, and U2AF 1 related sequence 1 genes were down-regulated. More interesting finding was that genes of both catalytic and regulatory subunit of protein phosphatases which are important for signal transduction pathways were down-regulated. Here, we propose that acrylamide induces neurotoxicity by regulation of genes associated with neurofilament synthesis, axonal transport, neuro-protection, and signal transduction pathways.

THE EXPRESSION OF MSX GENES DURING EARLY CRANIAL SUTURE EMBRYOGENESIS (두개골 봉합부의 초기 형태발생과정에서 Msx 유전자들의 발현양상)

  • Lee, Sang-Youp;Park, Mi-Hyun;Ryoo, Hyun-Mo;Nam, Soon-Hyeun;Kim, Young-Jin;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.171-180
    • /
    • 2003
  • The development of calvarial bones is tighly co-ordinated with the growth of the brain and needs of harmonious interactions between different tissues within the calvarial sutures. Premature fusion of cranial sutures, known as craniosynostosis, presumably involves disturbance of these interactions. Mutations in the homeobox-containg gene Msx2 cause human craniosynostosis syndrome. Msx genes, which are consist of Msx1, Msx2 and Msx3, are homeobox-containg transcripton factors, and were originally identified as homologue of Drosophila msh(muscle segment homeobox) gene. Msx1 and Msx2 genes, expressed mostly in overlapping patterns at multiple site of tissue interactions during vertebrate development, are associated with epithelial-mesenchymal interactions during organogenesis, targets of BMP and FGF signaling. To elucidate the function of Msx genes in the early morphogenesis of mouse cranial suture, we analyzed the expression of them by in situ hybridization during embryonic(E15-E18) stage, and did vivo experiments in E15.5 mouse using rhBMP-2, rhFGF-2 protein soaked bead. In the sagittal suture, Msx1 was expressed in the mesenchyme of suture and the dura mater, Msx2 was intensely expressed in the sutural mesenchyme and the dura mater. In the coronal suture both of Msx genes were expressed intensely in the sutural mesenchyme and expressed in the periosteum also. Msx1 had a broader expression pattern than Msx2. BMP2 beads induced expression of both Msx1 and Msx2, FGF2 beads induced expression of Msx1, but not Msx2. Taken together, these data suggest that Msx1 and Msx2 genes have important role in regulating the morphogenesis and maintenance of embryonic cranial suture. Both of Msx genes are expressed similarly but because of their upstream signaling, they function dependently or cooperatively according to change of signaling molecule.

  • PDF

Induction of Tyrosine Hydroxylase by Nurr-1 in hES Cells

  • An So-Yeon;Lee Yeong-Jae;Kim Eun-Yeong;Jo Hyeon-Jeong;Choe Gyeong-Hui;Park Se-Pil;Im Jin-Ho
    • Proceedings of the KSAR Conference
    • /
    • 2002.06a
    • /
    • pp.85-85
    • /
    • 2002
  • As an effort to direct differentiation of human embryonic stem cells (hES, MB03) to dopamine-producing neuronal cells, we expressed Nurr-l in hES and examined the expression of tyrosine hydroxylase (TH) after bFGF induction. To introduce Nurr-l, hES cells were maintained in humidified chamber with 5% CO₂ and 95% air in DMEM/Fl2 supplemented with FBS (10%), penicillin (100U/㎖), and streptomycin (100㎍/㎖). (omitted)

  • PDF

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: Effects of PDGF-bb and BDNF on the Generation of Functional Neurons (인간 배아 줄기세포 유래 신경세포로의 분화: BDNF와 PDGF-bb가 기능성 신경세포 생성에 미치는 영향)

  • Cho, Hyun-Jung;Kim, Eun-Young;Lee, Young-Jae;Choi, Kyoung-Hee;Ahn, So-Yeon;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Objective: This study was to investigate the generation of the functional neuron derived from human embryonic stem (hES, MB03) cells on in vitro neural cell differentiation system. Methods: For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for $7{\sim}10$ days, 20 ng/ml of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron, neural progenitor cells were cultured in i) N2 medium only (without bFGF), ii) N2 supplemented with 20 ng/ml platelet derived growth factor-bb (PDGF-bb) or iii) N2 supplemented with 5 ng/ml brain derived neurotrophic factor (BDNF) for 2 weeks. Identification of neural cell differentiation was carried out by immunocytochemistry using $\beta_{III}$-tubulin (1:250), MAP-2 (1:100) and GFAP (1:500). Also, generation of functional neuron was identified using anti-glutamate (Sigma, 1:1000), anti-GABA (Sigma, 1:1000), anti-serotonin (Sigma, 1:1000) and anti-tyrosine hydroxylase (Sigma, 1:1000). Results: In vitro neural cell differentiation, neurotrophic factors (PDGF and BDNF) treated cell groups were high expressed MAP-2 and GFAP than non-treated cell group. The highest expression pattern of MAP-2 and $\beta_{III}$-tubulin was indicated in BDNF treated group. Also, in the presence of PDGF-bb or BDNF, most of the neural cells derived from hES cells were differentiated into glutamate and GABA neuron in vitro. Furthermore, we confirmed that there were a few serotonin and tyrosine hydroxylase positive neuron in the same culture environment. Conclusion: This results suggested that the generation of functional neuron derived from hES cells was increased by addition of neurotrophic factors such as PDGF-bb or BDNF in b-FGF induced neural cell differentiation system and especially glutamate and GABA neurons were mainly produced in the system.

Expression of Neuregulins and Their Receptors During the Differentiation of Rat Hippocampal HiB5 Cells

  • Kwon, Hyockman
    • Animal cells and systems
    • /
    • v.5 no.3
    • /
    • pp.247-251
    • /
    • 2001
  • Differentiating HiB5 cells, a rat hippocampal cell line, expressed neuregulins and showed constitutive activation of a neuregulin receptor, ErbB2, suggesting development of a neuregulin autocrine loop. RT-PCR analyses indicated that HiB5 cells produced SMDF and NDF, but not GGF, during the differentiation. None of neuregulin isoforms were detected in proliferating HiB5 cells. The neuregulins in HiBS cells, at least in part, are the $\beta$-isoforms of which the most of neuronal neuregulin isoforms are. The expression of SMDF and NDF was enhanced by PDGF and bFGF that promote cell survival and differentiation, suggesting a close relationship between the synthesis of neuregulins and the differentiation process. HiB5 cells have ErbB2 and ErbB4, but not ErbB3 receptors. Constitutive tyrosine phosphorylation of ErbB2 was detected in HiB5 cells that had not been exposed to exogenous GGF.

  • PDF

The Role of Angiogenesis in Obesity (비만에서의 혈관신생의 역할)

  • Yoon, Michung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.573-587
    • /
    • 2014
  • Angiogenesis, the formation of new capillary blood vessels, is a tightly regulated process. Under normal physiological conditions, angiogenesis only takes place during embryonic development, wound healing, and female menstruation. Dysregulation of angiogenesis is associated with many diseases, such as cancer, rheumatoid arthritis, psoriasis, and proliferative retinopathy. The growth and expansion of adipose tissue require the formation of new blood vessels. Adipose tissue is probably the most highly vascularized tissue in the body, as each adipocyte is surrounded by capillaries, and the angiogenic vessels supply nutrients and oxygen to adipocytes. Accumulating evidence shows that capillary endothelial cells communicate with adipocytes via paracrine signaling pathways, extracellular components, and direct cell-cell interactions. Activated adipocytes produce multiple angiogenic factors, including VEGF, FGF-2, leptin, and HGF, which either alone or cooperatively stimulate the expansion and metabolism of adipose tissue by increasing adipose tissue vasculature. Recently, it was demonstrated that antiangiogenic herbal Ob-X extracts and Korean red ginseng extracts reduce adipose tissue mass and suppress obesity by inhibiting angiogenesis in obese mice. Thus, angiogenesis inhibitors provide a promising therapeutic approach for controlling human obesity and related disorders.

THE ROLE OF TRANSCRIPTION FACTOR MSX2 AND DLX5 IN CALVARIAL BONE AND SUTURE DEVELOPMENT (두개골 및 두개봉합부 초기발육과정에서의 전사조절인자인 Msx2와 Dlx5의 역할)

  • Song, Min-Ho;Park, Mi-Hyun;Nam, Soon-Hyeun;Kim, Young-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.3
    • /
    • pp.391-405
    • /
    • 2003
  • Craniosynostosis, known as a premature fusion of cranial sutures, is a developmental disorder characterized by precocious differentiation and mineralization of osteoblasts in the calvarial sutures. Recent genetic studies have demonstrated that mutation in the homeobox gene Msx2 causes Boston-type human craniosynostosis. Additionally, the phenotype of Dlx5 homozygote mutant mouse presents craniofacial abnormalities including a delayed ossification of calvarial bone. Furthermore transcription of osteocalcin, a mature osteoblast marker, is reciprocally regulated by the homeodomain proteins Msx2 and Dlx5. These facts suggest important roles of osteocalcin, Msx2 and Dlx5 genes in the calvarial bone growth and suture morphogenesis. To elucidate the function of these molecules in the early morphogenesis of mouse cranial sutures, we have first analyzed by in situ hybridization the expression of osteocalcin, Msx2 and Dlx5 genes in the developing parietal bone and sagittal suture of mouse calvaria during the embryonic (E15-E18) stage. Osteocalcin mRNA was found in the periosteum of parietal bones from E15, and gradually more highly expressed with aging. Msx2 mRNA was intensely expressed in the sutural mesenchyme, osteogenic fronts and mildly expressed in the dura mater during the embryonic stage. Dlx5 mRNA was intensely expressed osteogenic fronts and the periostem of parietal bones. To further examine the upstream signaling molecules of transcription factor Msx2 and Dlx5, we have done in vitro experiments in E15.5 mouse calvarial explants. Interestingly, implantation of BMP2-, BMP4-soaked beads onto the osteogenic fronts after 48 hours organ culture induced etopic expressions of Msx2 and Dlx5 genes. On the other hand, overexpression of $TGF{\beta}1$, GDF-6, -7, FGF-2, -4 and Shh did not induce the expression of Msx2 and Dlx5. Taken together. these data indicate that transcription factor Msx2 and Dlx5 play critical roles in the calvarial bone and suture development, and that BMP siganling is involved in the osteogenesis of calvarial bones and the maintenance of cranial sutures through regulating these two transcriotpn factors. Furthermore, different expression patterns between Msx2 and Dlx5 suggest their specific functions in the osteoblast differentiation.

  • PDF