• Title/Summary/Keyword: FG porous

Search Result 136, Processing Time 0.019 seconds

A review on dynamic characteristics of nonlocal porous FG nanobeams under moving loads

  • Abdulaziz Saud Khider;Ali Aalsaud;Nadhim M. Faleh;Abeer K. Abd;Mamoon A.A. Al-Jaafari;Raad M. Fenjan
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • This research presents dynamical reaction investigation of pore-dependent and nano-thickness beams having functional gradation (FG) constituents exposed to a movable particle. The nano-thickness beam formulation has been appointed with the benefits of refined high orders beam paradigm and nonlocal strain gradient theory (NSGT) comprising two scale moduli entitled nonlocality and strains gradient modulus. The graded pore-dependent constituents have been designed through pore factor based power-law relations comprising pore volumes pursuant to even or uneven pore scattering. Therewith, variable scale modulus has been thought-out until process a more accurate designing of scale effects on graded nano-thickness beams. The motion equations have been appointed to be solved via Ritz method with the benefits of Chebyshev polynomials in cosine form. Also, Laplace transform techniques help Ritz-Chebyshev method to obtain the dynamical response in time domain. All factors such as particle speed, pores and variable scale modulus affect the dynamical response.

Theoretical buckling analysis of inhomogeneous plates under various thermal gradients and boundary conditions

  • Laid Lekouara;Belgacem Mamen;Abdelhakim Bouhadra;Abderahmane Menasria;Kouider Halim Benrahou;Abdelouahed Tounsi;Mohammed A. Al-Osta
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.443-459
    • /
    • 2023
  • This study investigates the theoretical thermal buckling analyses of thick porous rectangular functionally graded (FG) plates with different geometrical boundary conditions resting on a Winkler-Pasternak elastic foundation using a new higher-order shear deformation theory (HSDT). This new theory has only four unknowns and involves indeterminate integral variables in which no shear correction factor is required. The variation of material properties across the plate's thickness is considered continuous and varied following a simple power law as a function of volume fractions of the constituents. The effect of porosity with two different types of distribution is also included. The current formulation considers the Von Karman nonlinearity, and the stability equations are developed using the virtual works principle. The thermal gradients are involved and assumed to change across the FG plate's thickness according to nonlinear, linear, and uniform distributions. The accuracy of the newly proposed theory has been validated by comparing the present results with the results obtained from the previously published theories. The effects of porosity, boundary conditions, foundation parameters, power index, plate aspect ratio, and side-to-thickness ratio on the critical buckling temperature are studied and discussed in detail.

Vibration analysis of FG porous rectangular plates reinforced by graphene platelets

  • Zhou, Changlin;Zhang, Zhongxian;Zhang, Ji;Fang, Yuan;Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The aim of this study is to investigate free vibration of functionally graded porous nanocomposite rectangular plates where the internal pores and graphene platelets (GPLs) are distributed in the matrix either uniformly or non-uniformly according to three different patterns. The elastic properties of the nanocomposite are obtained by employing Halpin-Tsai micromechanics model. The GPL-reinforced plate is modeled using a semi-analytic approach composed of generalized differential quadrature method (GDQM) and series solution adopted to solve the equations of motion. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The 2-D differential quadrature method as an efficient and accurate numerical tool is used to discretize the governing equations and to implement the boundary conditions. The convergence of the method is demonstrated and to validate the results, comparisons are made between the present results and those reported by well-known references for special cases treated before, have confirmed accuracy and efficiency of the present approach. New results reveal the importance of porosity coefficient, porosity distribution, graphene platelets (GPLs) distribution, geometrical and boundary conditions on vibration behavior of porous nanocomposite plates. It is observed that the maximum vibration frequency obtained in the case of symmetric porosity and GPL distribution, while the minimum vibration frequency is obtained using uniform porosity distribution.

Axisymmetric vibration analysis of a sandwich porous plate in thermal environment rested on Kerr foundation

  • Zhang, Zhe;Yang, Qijian;Jin, Cong
    • Steel and Composite Structures
    • /
    • v.43 no.5
    • /
    • pp.581-601
    • /
    • 2022
  • The main objective of this research work is to investigate the free vibration behavior of annular sandwich plates resting on the Kerr foundation at thermal conditions. This sandwich configuration is composed of two FGM face sheets as coating layer and a porous GPLRC (GPL reinforced composite) core. It is supposed that the GPL nanofillers and the porosity coefficient vary continuously along the core thickness direction. To model closed-cell FG porous material reinforced with GPLs, Halpin-Tsai micromechanical modeling in conjunction with Gaussian-Random field scheme is used, while the Poisson's ratio and density are computed by the rule of mixtures. Besides, the material properties of two FGM face sheets change continuously through the thickness according to the power-law distribution. To capture fundamental frequencies of the annular sandwich plate resting on the Kerr foundation in a thermal environment, the analysis procedure is with the aid of Reddy's shear-deformation plate theory based high-order shear deformation plate theory (HSDT) to derive and solve the equations of motion and boundary conditions. The governing equations together with related boundary conditions are discretized using the generalized differential quadrature (GDQ) method in the spatial domain. Numerical results are compared with those published in the literature to examine the accuracy and validity of the present approach. A parametric solution for temperature variation across the thickness of the sandwich plate is employed taking into account the thermal conductivity, the inhomogeneity parameter, and the sandwich schemes. The numerical results indicate the influence of volume fraction index, GPLs volume fraction, porosity coefficient, three independent coefficients of Kerr elastic foundation, and temperature difference on the free vibration behavior of annular sandwich plate. This study provides essential information to engineers seeking innovative ways to promote composite structures in a practical way.

Buckling of 2D FG Porous unified shear plates resting on elastic foundation based on neutral axis

  • Rabab, Shanab;Salwa, Mohamed;Mohammed Y., Tharwan;Amr E., Assie;Mohamed A., Eltaher
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.729-747
    • /
    • 2022
  • The critical buckling loads and buckling modes of bi-directional functionally graded porous unified higher order shear plate with elastic foundation are investigated. A mathematical model based on neutral axis rather than midplane is developed in comprehensive way for the first time in this article. The material constituents form ceramic and metal are graded through thickness and axial direction by the power function distribution. The voids and cavities inside the material are proposed by three different porosity models through the thickness of plate. The constitutive parameters and force resultants are evaluated relative to the neutral axis. Unified higher order shear plate theories are used to satisfy the zero-shear strain/stress at the top and bottom surfaces. The governing equilibrium equations of bi-directional functionally graded porous unified plate (BDFGPUP) are derived by Hamilton's principle. The equilibrium equations in the form of coupled variable coefficients partial differential equations is solved by using numerical differential integral quadrature method (DIQM). The validation of the present model is presented and compared with previous works for bucking. Deviation in buckling loads for both mid-plane and neutral plane are developed and discussed. The numerical results prove that the shear functions, distribution indices, boundary conditions, elastic foundation and porosity type have significant influence on buckling stability of BDFGPUP. The current mathematical model may be used in design and analysis of BDFGPU used in nuclear, mechanical, aerospace, and naval application.

Mathematical formulations for static behavior of bi-directional FG porous plates rested on elastic foundation including middle/neutral-surfaces

  • Amr E. Assie;Salwa A. Mohamed;Alaa A. Abdelrahman;Mohamed A. Eltaher
    • Steel and Composite Structures
    • /
    • v.48 no.2
    • /
    • pp.113-130
    • /
    • 2023
  • The present manuscript aims to investigate the deviation between the middle surface (MS) and neutral surface (NS) formulations on the static response of bi-directionally functionally graded (BDFG) porous plate. The higher order shear deformation plate theory with a four variable is exploited to define the displacement field of BDFG plate. The displacement field variables based on both NS and on MS are presented in detail. These relations tend to get and derive a new set of boundary conditions (BCs). The porosity distribution is portrayed by cosine function including three different configurations, center, bottom, and top distributions. The elastic foundation including shear and normal stiffnesses by Winkler-Pasternak model is included. The equilibrium equations based on MS and NS are derived by using Hamilton's principles and expressed by variable coefficient partial differential equations. The numerical differential quadrature method (DQM) is adopted to solve the derived partial differential equations with variable coefficient. Rigidities coefficients and stress resultants for both MS and NS formulations are derived. The mathematical formulation is proved with previous published work. Additional numerical and parametric results are developed to present the influences of modified boundary conditions, NS and MS formulations, gradation parameters, elastic foundations coefficients, porosity type and porosity coefficient on the static response of BDFG porous plate. The following model can be used in design and analysis of BDFG structure used in aerospace, vehicle, dental, bio-structure, civil and nuclear structures.

NO2 Sensing Characteristics of Si MOSFET Gas Sensor Based on Thickness of WO3 Sensing Layer

  • Jeong, Yujeong;Hong, Seongbin;Jung, Gyuweon;Jang, Dongkyu;Shin, Wonjun;Park, Jinwoo;Han, Seung-Ik;Seo, Hyungtak;Lee, Jong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.14-18
    • /
    • 2020
  • This study investigates the nitrogen dioxide (NO2) sensing characteristics of an Si MOSFET gas sensor with a tungsten trioxide (WO3) sensing layer deposited using the sputtering method. The Si MOSFET gas sensor consists of a horizontal floating gate (FG) interdigitated with a control gate (CG). The WO3 sensing layer is deposited on the interdigitated CG-FG of a field effect transistor(FET)-type gas sensor platform. The sensing layer is deposited with different thicknesses of the film ranging from 100 nm to 1 ㎛ by changing the deposition times during the sputtering process. The sensing characteristics of the fabricated gas sensor are measured at different NO2 concentrations and operating temperatures. The response of the gas sensor increases as the NO2 concentration and operating temperature increase. However, the gas sensor has an optimal performance at 180℃ considering both response and recovery speed. The response of the gas sensor increases significantly from 24% to 138% as the thickness of the sensing layer increases from 100 nm to 1 ㎛. The sputtered WO3 film consists of a dense part and a porous part. As reported in previous work, the area of the porous part of the film increases as the thickness of the film increases. This increased porous part promotes the reaction of the sensing layer with the NO2 gas. Consequently, the response of the gas sensor increases as the thickness of the sputtered WO3 film increases.

Dynamic analysis of functionally graded nonlocal nanobeam with different porosity models

  • Ghandourh, Emad E.;Abdraboh, Azza M.
    • Steel and Composite Structures
    • /
    • v.36 no.3
    • /
    • pp.293-305
    • /
    • 2020
  • This article presented a nanoscale modified continuum model to investigate the free vibration of functionally graded (FG) porous nanobeam by using finite element method. The main novelty of this manuscript is presenting effects of four different porosity models on vibration behaviors of nonlocal nanobeam structure including size effect, that not be discussed before The proposed porosity models are, uniform porosity distribution, symmetric with mid-plane, bottom surface distribution and top surface distribution. The nano-scale effect is included in modified model by using the differential nonlocal continuum theory of Eringen that adding the length scale into the constitutive equations as a material parameter constant. The graded material is distributed through the beam thickness by a generalized power law function. The beam is simply supported, and it is assumed to be thin. Therefore, the kinematic assumptions of Euler-Bernoulli beam theory are held. The mathematical model is solved numerically using the finite element method. Results demonstrate effects of porosity type, material gradation, and nanoscale parameters on the free vibration of nanobeam. The proposed model is effective in vibration analysis of NEMS structure manufactured by porous functionally graded materials.

Forced vibration of a functionally graded porous beam resting on viscoelastic foundation

  • Alnujaie, Ali;Akbas, Seref D.;Eltaher, Mohamed A.;Assie, Amr
    • Geomechanics and Engineering
    • /
    • v.24 no.1
    • /
    • pp.91-103
    • /
    • 2021
  • This paper concerns with forced dynamic response of thick functionally graded (FG) beam resting on viscoelastic foundation including porosity impacts. The dynamic point load is proposed to be triangle point loads in time domain. In current analysis the beam is assumed to be thick, therefore, the two-dimensional plane stress constitutive equation is proposed to govern the stress-strain relationship through the thickness. The porosity and void included in constituent is described by three different distribution models through the beam thickness. The governing equations are obtained by using Lagrange's equations and solved by finite element method. In frame of finite element analysis, twelve-node 2D plane element is exploited to discretize the space domain of beam. In the solution of the dynamic problem, Newmark average acceleration method is used. In the numerical results, effects of porosity coefficient, porosity distribution and foundation parameters on the dynamic responses of functionally graded viscoelastic beam are presented and discussed. The current model is efficient in many applications used porous FGM, such as aerospace, nuclear, power plane sheller, and marine structures.

Exact third-order static and free vibration analyses of functionally graded porous curved beam

  • Beg, Mirza S.;Khalid, Hasan M.;Yasin, Mohd Y.;Hadji, L.
    • Steel and Composite Structures
    • /
    • v.39 no.1
    • /
    • pp.1-20
    • /
    • 2021
  • An exact solution based on refined third-order theory (TOT) has been presented for functionally graded porous curved beams having deep curvature. The displacement field of the refined TOT is derived by imposing the shear free conditions at the outer and inner surfaces of curved beams. The properties of the two phase composite are tailored according the power law rule and the effective properties are computed using Mori-Tanaka homogenization scheme. The equations of motion as well as consistent boundary conditions are derived using the Hamilton's principle. The curved beam stiffness coefficients (A, B, D) are obtained numerically using six-point Gauss integration scheme without compromising the accuracy due to deepness (1 + z/R) terms. The porosity has been modeled assuming symmetric (even) as well as asymmetric (uneven) distributions across the cross section of curved beam. The programming has been performed in MATLAB and is validated with the results available in the literature as well as 2D finite element model developed in ABAQUS. The effect of inclusion of 1 + z/R terms is studied for deflection, stresses and natural frequencies for FG curved beams of different radii of curvature. Results presented in this work will be useful for comparison of future studies.