• Title/Summary/Keyword: FETs

Search Result 222, Processing Time 0.026 seconds

Compact Modeling for Nanosheet FET Based on TCAD-Machine Learning (TCAD-머신러닝 기반 나노시트 FETs 컴팩트 모델링)

  • Junhyeok Song;Wonbok Lee;Jonghwan Lee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.136-141
    • /
    • 2023
  • The continuous shrinking of transistors in integrated circuits leads to difficulties in improving performance, resulting in the emerging transistors such as nanosheet field-effect transistors. In this paper, we propose a TCAD-machine learning framework of nanosheet FETs to model the current-voltage characteristics. Sentaurus TCAD simulations of nanosheet FETs are performed to obtain a large amount of device data. A machine learning model of I-V characteristics is trained using the multi-layer perceptron from these TCAD data. The weights and biases obtained from multi-layer perceptron are implemented in a PSPICE netlist to verify the accuracy of I-V and the DC transfer characteristics of a CMOS inverter. It is found that the proposed machine learning model is applicable to the prediction of nanosheet field-effect transistors device and circuit performance.

  • PDF

Sensitivity of a charge-detecting label-free DNA sensor using field-effect transistors (FETs) depending on the Debye length (전계효과 트랜지스터(FETs)를 이용한 전하 검출형 DNA 센서에서 Debye length에 따른 검출 감도)

  • Song, Kwang-Soup
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.86-90
    • /
    • 2011
  • The effects of cations are very important in field-effect transistors (FETs) type DNA sensors detecting the intrinsic negative charge between single-stranded DNA and double-stranded DNA without labeling, because the intrinsic negative charge of DNA is neutralized by cations in electrolyte solution. We consider the Debye length, which depends on the concentration of cations in solution, to detect DNA hybridization based on the intrinsic negative charge of DNA. The Debye length is longer in buffer solution with a lower concentration of NaCl and the intrinsic negative charge of DNA is more effective on the channel surface in longer Debye length solution. The shifts in the gate voltage by DNA hybridization with complementary target DNA are 21 mV in 1 mM NaCl buffer solution, 7.2 mV in 10 mM NaCl buffer solution, and 5.1 mV in 100 mM NaCl buffer solution. The sensitivity of FETs to detect DNA hybridization based on charge detection without labeling depends on the Debye length.

Fabrication and Characterization of MFIS-FET using Au/SBT/LZO/Si structure

  • Im, Jong-Hyun;Lee, Gwang-Geun;Kang, Hang-Sik;Jeon, Ho-Seung;Park, Byung-Eun;Kim, Chul-Ju
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.174-174
    • /
    • 2008
  • Non-volatile memories using ferroelectric-gate field-effect transistors (Fe-FETs) with a metal/ferroelectric/semiconductor gate stack (MFS-FETs) make non-destructive read operation possible. In addition, they also have features such as high switching speed, non-volatility, radiation tolerance, and high density. However, the interface reaction between ferroelectric materials and Si substrates, i.e. generation of mobile ions and short retention, make it difficult to obtain a good ferroelectric/Si interface in an MFS-FET's gate. To overcome these difficulties, Fe-FETs with a metal/ferroelectric/insulator/semiconductor gate stack (MFIS-FETs) have been proposed, where insulator as a buffer layer is inserted between ferroelectric materials and Si substrates. We prepared $SrBi_2Ta_2O_9$ (SBT) film as a ferroelectric layer and $LaZrO_x$ (LZO) film as a buffer layer on p-type (100) silicon wafer for making the MFIS-FET devices. For definition of source and drain region, phosphosilicate glass (PSG) thin film was used as a doping source of phosphorus (P). Ultimately, the n-channel ferroelectric-gate FET using the SBT/LZO/Si Structure is fabricated. To examine the ferroelectric effect of the fabricated Fe-FETs, drain current ($I_d$) versus gate voltage ($V_g$) characteristics in logarithmic scale was measured. Also, drain current ($I_d$) versus drain voltage ($V_d$) characteristics of the fabricated SBT/LZO/Si MFIS-FETs was measured according to the gate voltage variation.

  • PDF

A study for omega-shaped gate ZnO nanowire FET (Omega 형태의 게이트를 갖는 ZnO 나노선 FET에 대한 연구)

  • Keem, Ki-Hyun;Kang, Jeong-Min;Yoon, Chang-Joon;Jeong, Dong-Young;Kim, Sang-Sig
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1297-1298
    • /
    • 2006
  • Omega-shaped-gate (OSG) nanowire-based field effect transistors (FETs) have been attracted recently attention due to their highdevice performance expected from theoretical simulations among nanowire-based FETs with other gate geometries. OSG FETs with the channels of ZnO nanowires were successfully fabricated in this study with photolithographic processes. In the OSG FETs fabricated on oxidized Si substrates, the channels of ZnO nanowires with diameters of about 60 nm are coated surroundingly by $Al_{2}O_{3}$ as gate dielectrics with atomic layer deposition. About 80 % of the surfaces of the nanowires coated with $Al_{2}O_{3}$ is covered with gate metal to form OSG FETs. A representative OSG FET fabricated in this study exhibits a mobility of 98.9 $cm^{2}/Vs$, a peak transconductance of 0.4 ${\mu}S$, and an Ion/Ioff ratio of $10^6$ the value of the Ion/Ioff ratio obtained from this OSG FET is the highest among nanowire-based FETs, to our knowledge. Its mobility, peak transconductance, and Ion/Ioff ratio arc remarkably enhanced by 11.5, 32, and $10^6$ times, respectively, compared with a back-gate FET with the same ZnO nanowire channel as utilized in the OSG FET.

  • PDF

Schottky barrier overlapping in short channel SB-MOSFETs (Short Channel SB-FETs의 Schottky 장벽 Overlapping)

  • Choi, Chang-Yong;Cho, Won-Ju;Chung, Hong-Bay;Koo, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.133-133
    • /
    • 2008
  • Recently, as the down-scailing of field-effect transistor devices continues, Schottky-barrier field-effect transistors (SB-FETs) have attracted much attention as an alternative to conventional MOSFETs. SB-FETs have advantages over conventional devices, such as low parasitic source/drain resistance due to their metallic characteristics, low temperature processing for source/drain formation and physical scalability to the sub-10nm regime. The good scalability of SB-FETs is due to their metallic characteristics of source/drain, which leads to the low resistance and the atomically abrupt junctions at metal (silicide)-silicon interface. Nevertheless, some reports show that SB-FETs suffer from short channel effect (SCE) that would cause severe problems in the sub 20nm regime.[Ouyang et al. IEEE Trans. Electron Devices 53, 8, 1732 (2007)] Because source/drain barriers induce a depletion region, it is possible that the barriers are overlapped in short channel SB-FETs. In order to analyze the SCE of SB-FETs, we carried out systematic studies on the Schottky barrier overlapping in short channel SB-FETs using a SILVACO ATLAS numerical simulator. We have investigated the variation of surface channel band profiles depending on the doping, barrier height and the effective channel length using 2D simulation. Because the source/drain depletion regions start to be overlapped each other in the condition of the $L_{ch}$~80nm with $N_D{\sim}1\times10^{18}cm^{-3}$ and $\phi_{Bn}$ $\approx$ 0.6eV, the band profile varies as the decrease of effective channel length $L_{ch}$. With the $L_{ch}$~80nm as a starting point, the built-in potential of source/drain schottky contacts gradually decreases as the decrease of $L_{ch}$, then the conduction and valence band edges are consequently flattened at $L_{ch}$~5nm. These results may allow us to understand the performance related interdependent parameters in nanoscale SB-FETs such as channel length, the barrier height and channel doping.

  • PDF

Analysis of Cascode FETs Self Oscillator Mixer to Improve Image rejection (Cascode FETs형 자기발진 믹서의 이미지신호제거 개선 효과 분석)

  • 심재우;이영철
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.429-432
    • /
    • 2001
  • 본 논문에서는 Cascode FETs 구조를 능동필터로 동작시켜 이미지제거 특성을 분석하였으며, Cascode형 자기발진 믹서를 설계하였다. Ku-band 대역에서 모의실험 결과 Cas code FETs형 자기발진믹서에서 이미지성분이 -254Bc 개선되었으며, Single FET형 자기발진믹서와 비교해서 -23dBc 이상 개선됨을 확인할 수 있었다.

  • PDF

Electrical Properties of Metal-Ferroelectric-Insulator-Semiconductor Field-Effect Transistor Using an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si Structure

  • Jeon, Ho-Seung;Lee, Gwang-Geun;Kim, Joo-Nam;Park, Byung-Eun;Choi, Yun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.171-172
    • /
    • 2007
  • We fabricated the metal-ferroelectric-insulator-semiconductor filed-effect transistors (MFIS-FETs) using the $(Bi,La)_4Ti_3O_{12}\;and\;LaZrO_x$ thin films. The $LaZrO_x$ thin film had a equivalent oxide thickness (EOT) value of 8.7 nm. From the capacitance-voltage (C-V) measurements for an Au/$(Bi,La)_4Ti_3O_{12}/LaZrO_x$/Si MFIS capacitor, a hysteric shift with a clockwise direction was observed and the memory window width was about 1.4 V for the bias voltage sweeping of ${\pm}9V$. From drain current-gate voltage $(I_D-V_G)$ characteristics of the fabricated Fe-FETs, the obtained threshold voltage shift (memory window) was about 1 V due to ferroelectric nature of BLT film. The drain current-drain voltage $(I_D-V_D)$ characteristics of the fabricated Fe-FETs showed typical n-channel FETs current-voltage characteristics.

  • PDF

Device Optimization for Suppression of Short-Channel Effects in Bulk FinFET with Vacuum Gate Spacer (진공 게이트 스페이서를 지니는 Bulk FinFET의 단채널효과 억제를 위한 소자구조 최적화 연구)

  • Yeon, Ji-Yeong;Lee, Khwang-Sun;Yoon, Sung-Su;Yeon, Ju-Won;Bae, Hagyoul;Park, Jun-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.576-580
    • /
    • 2022
  • Semiconductor devices have evolved from 2D planar FETs to 3D bulk FinFETs, with aggressive device scaling. Bulk FinFETs make it possible to suppress short-channel effects. In addition, the use of low-k dielectric materials as a vacuum gate spacer have been suggested to improve the AC characteristics of the bulk FinFET. However, although the vacuum gate spacer is effective, correlation between the vacuum gate spacer and the short-channel-effects have not yet been compared or discussed. Using a 3D TCAD simulator, this paper demonstrates how to optimize bulk FinFETs including a vacuum gate spacer and to suppress short-channel effects.

Fabrication of silicon nano-ribbon and nano-FETs by using AFM anodic oxidation

  • Hwang, Min-Yeong;Choe, Chang-Yong;Jeong, Ji-Cheol;An, Jeong-Jun;Gu, Sang-Mo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.54-54
    • /
    • 2009
  • AFM anodic oxidation has the capability of patterning complex nano-patterns under relatively high speeds and low voltage. We report the fabrication using a atomic force microscopy (AFM) of silicon nano-ribbon and nano-field effect transistors (FETs). The fabricated nano-patterns have great potential characteristics in various fields due to their interesting electronic, optical and other profiles. The results shows that oxide width and the separation between the oxide patterns can be optimally controlled. The subsequently fabricated silicon nano-ribbon and nano-FET working devices were controled by various tip-sample bias-voltages and scan speed of AFM anodic oxidation. The results may be applied for highly integration circuits and sensitive optical sensor applications.

  • PDF

Degradation Pattern of Black phosphorus Field Effect Transistor

  • Lee, Byeong-Cheol;Ju, Min-Gyu;Jin, Jun-Eon;Lee, Jae-U;Kim, Gyu-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.120.1-120.1
    • /
    • 2015
  • We investigate the degradation pattern of Black phosphorus (BP) field effect transistor (FETs) investigated by using an mechanically exfoliated BP that react O2 and water vapor in ambient condition, degradation. The BP FETs was electrically measured every 20 minutes (1cycle) in the air, the total cycle is 100. We show electrical changes with Mobility, On/off ratio, Current and a significant positive shift in the threshold voltage. We extracted the current level at Vgs-Vth = 0, -10, -20 and fitting with Swiss-cheese model. This model suggested that Swiss-cheese model is well fitted with degradation pattern of BP FETs.

  • PDF