• Title/Summary/Keyword: FET based biosensors

Search Result 14, Processing Time 0.023 seconds

Electronic Detection of Biomarkers by Si Field-Effect Transistor from Undiluted Sample Solutions with High Ionic Strengths

  • Ah, Chil-Seong;Kim, An-Soon;Kim, Wan-Joong;Park, Chan-Woo;Ahn, Chang-Geun;Yang, Jong-Heon;Baek, In-Bok;Kim, Tae-Youb;Sung, Gun-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1561-1567
    • /
    • 2010
  • In this study, we have developed a new detection method using Si field effect transistor (FET)-type biosensors, which enables the direct monitoring of antigen-antibody binding within very high-ionic-strength solutions such as 1$\times$PBS and human serum. In the new method, as no additional dilution or desalting processes are required, the FET-type biosensors can be more suitable for ultrasensitive and real-time analysis of raw sample solutions. The new detection scheme is based on the observation that the strength of antigen-antibody-specific binding is significantly influenced by the ionic strength of the reaction solutions. For a prostate specific antigen (PSA), in some conditions, the binding reaction between PSA and anti-PSA in a low-ionic strength reaction solution such as 10 ${\mu}M$ phosphate buffer is weak (reversible), while that in high-ionic strength reaction solutions such as 1$\times$PBS or human serum is strong.

Investigation of Feasibility of Tunneling Field Effect Transistor (TFET) as Highly Sensitive and Multi-sensing Biosensors

  • Lee, Ryoongbin;Kwon, Dae Woong;Kim, Sihyun;Kim, Dae Hwan;Park, Byung-Gook
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.17 no.1
    • /
    • pp.141-146
    • /
    • 2017
  • In this letter, we propose the use of tunneling field effect transistors (TFET) as a biosensor that detects bio-molecules on the gate oxide. In TFET sensors, the charges of target molecules accumulated at the surface of the gate oxide bend the energy band of p-i-n structure and thus tunneling current varies with the band bending. Sensing parameters of TFET sensors such as threshold voltage ($V_t$) shift and on-current ($I_D$) change are extracted as a function of the charge variation. As a result, it is found that the performances of TFET sensors can surpass those of conventional FET (cFET) based sensors in terms of sensitivity. Furthermore, it is verified that the simultaneous sensing of two different target molecules in a TFET sensor can be performed by using the ambipolar behavior of TFET sensors. Consequently, it is revealed that two different molecules can be sensed simultaneously in a read-out circuit since the multi-sensing is carried out at equivalent current level by the ambipolar behavior.

Label-free Femtomolar Detection of Cancer Biomarker by Reduced Graphene Oxide Field-effect Transistor

  • Kim, Duck-Jin;Sohn, Il-Yung;Jung, Jin-Heak;Yoon, Ok-Ja;Lee, N.E.;Park, Joon-Shik
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.549-549
    • /
    • 2012
  • Early detection of cancer biomarkers in the blood is of vital importance for reducing the mortality and morbidity in a number of cancers. From this point of view, immunosensors based on nanowire (NW) and carbon nanotube (CNT) field-effect transistors (FETs) that allow the ultra-sensitive, highly specific, and label-free electrical detection of biomarkers received much attention. Nevertheless 1D nano-FET biosensors showed high performance, several challenges remain to be resolved for the uncomplicated, reproducible, low-cost and high-throughput nanofabrication. Recently, two-dimensional (2D) graphene and reduced GO (RGO) nanosheets or films find widespread applications such as clean energy storage and conversion devices, optical detector, field-effect transistors, electromechanical resonators, and chemical & biological sensors. In particular, the graphene- and RGO-FETs devices are very promising for sensing applications because of advantages including large detection area, low noise level in solution, ease of fabrication, and the high sensitivity to ions and biomolecules comparable to 1D nano-FETs. Even though a limited number of biosensor applications including chemical vapor deposition (CVD) grown graphene film for DNA detection, single-layer graphene for protein detection and single-layer graphene or solution-processed RGO film for cell monitoring have been reported, development of facile fabrication methods and full understanding of sensing mechanism are still lacking. Furthermore, there have been no reports on demonstration of ultrasensitive electrical detection of a cancer biomarker using the graphene- or RGO-FET. Here we describe scalable and facile fabrication of reduced graphene oxide FET (RGO-FET) with the capability of label-free, ultrasensitive electrical detection of a cancer biomarker, prostate specific antigen/${\alpha}$ 1-antichymotrypsin (PSA-ACT) complex, in which the ultrathin RGO channel was formed by a uniform self-assembly of two-dimensional RGO nanosheets, and also we will discuss about the immunosensing mechanism.

  • PDF

Fabrication and Characteristics of MOSFET Protein Sensor Using Nano SAMs (자기조립 단분자막을 이용한 MOSFET형 단백질 센서의 제작 및 특성)

  • Han, Seung-Woo;Park, Keun-Yong;Kim, Min-Suk;Kim, Hong-Seok;Bae, Young-Seuk;Choi, Sie-Young
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.90-95
    • /
    • 2004
  • Protein and gene detection have been growing importance in medical diagnostics. Field effect transistor (FET) - type biosensors have many advantages such as miniaturization, standardization, and mass-production. In this work, we have fabricated metal-oxide-semiconductor (MOS) FET that operates as molecular recognitions based electronic sensor. Measurements were taken with the devices under phosphate buffered saline solution. The drain current ($I_{D}$) was decreased after forming self-assembled mono-layers (SAMs) used to capture the protein, which resulted from the negative charges of SAMs, and increased after forming protein by 11.5% at $V_{G}$ = 0 V due to the positive charges of protein.