• Title/Summary/Keyword: FEM program

Search Result 635, Processing Time 0.088 seconds

Investigation of continuous and discontinuous contact cases in the contact mechanics of graded materials using analytical method and FEM

  • Yaylaci, Murat;Adiyaman, Gokhan;Oner, Erdal;Birinci, Ahmet
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.199-210
    • /
    • 2021
  • The aim of this paper was to examine the continuous and discontinuous contact problems between the functionally graded (FG) layer pressed with a uniformly distributed load and homogeneous half plane using an analytical method and FEM. The FG layer is made of non-homogeneous material with an isotropic stress-strain law with exponentially varying properties. It is assumed that the contact at the FG layer-half plane interface is frictionless, and only the normal tractions can be transmitted along the contacted regions. The body force of the FG layer is considered in the study. The FG layer was positioned on the homogeneous half plane without any bonds. Thus, if the external load was smaller than a certain critical value, the contact between the FG layer and half plane would be continuous. However, when the external load exceeded the critical value, there was a separation between the FG layer and half plane on the finite region, as discontinuous contact. Therefore, there have been some steps taken in this study. Firstly, an analytical solution for continuous and discontinuous contact cases of the problem has been realized using the theory of elasticity and Fourier integral transform techniques. Then, the problem modeled and two-dimensional analysis was carried out by using ANSYS package program based on FEM. Numerical results for initial separation distance and contact stress distributions between the FG layer and homogeneous half plane for continuous contact case; the start and end points of separation and contact stress distributions between the FG layer and homogeneous half plane for discontinuous contact case were provided for various dimensionless quantities including material inhomogeneity, distributed load width, the shear module ratio and load factor for both methods. The results obtained using FEM were compared with the results found using analytical formulation. It was found that the results obtained from analytical formulation were in perfect agreement with the FEM study.

Dynamic Response and Reinforcement of the Railway Plate Girder Bridges (무도상 철도판형교의 동적응답특성 및 보강방안)

  • Hwang, Won Sup;Cho, Eun Sang;Oh, Ji Taek;Kim, Hyun Min
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.3
    • /
    • pp.281-290
    • /
    • 2007
  • In this paper, the dynamic behavior of a 12m plate girder railway bridge is analyzed using the commercial FEM program. A time history load is applied to a standard train load via the shape function ofthe beam element. In addition, lateral behavior characteristics were simulated using the Klingel sine movement. A feasibility study of the FEM program and an analysis were performed by comparing the displacement and the acceleration, from the experimental data and the results of the FEM analysis. the time history of the lateral and vertical displacements are reflected in the experimental results. Six kinds of reinforcements were studied from the effects of the displacement and the acceleration. The RF-1 model that was applied to the upper lateral bracing system, and the RF-3 model that reinforced the plate, turned out to be the most effective reinforcement methods with respect to weight limits and construction simplification.

Reliability verification of cutting force experiment by the 3D-FEM analysis from reverse engineering design of milling tool (밀링 공구의 역 공학 설계에서 3D 유한요소 해석을 통한 절삭력 실험의 신뢰성 검증)

  • Jung, Sung-Taek;Wi, Eun-Chan;Kim, Hyun-Jeong;Song, Ki-Hyeok;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.13 no.2
    • /
    • pp.54-59
    • /
    • 2019
  • CNC(Computer Numerical Control) machine tools are being used in various industrial fields such as aircraft and automobiles. The machining conditions used in the mold industry are used, and the simulation and the experiment are compared. The tool used in the experiment was carried out to increase the reliability of the simulation of the cutting machining. The program used in the 3D-FEM (finite element method) was the AdvantEdge and predicted by down-milling. The tool model is used 3D-FEM simulation by using the cutting force, temperature prediction. In this study, we carried out the verification of cutting force by using a 3-axis tool dynamometer (Kistler 9257B) system when machining the plastic mold Steel machining of NAK-80. The cutting force experiment data using on the charge amplifier (5070A) is amplified, and the 3-axis cutting force data are saved as a TDMS file using the Lab-View based program using on NI-PXIe-1062Q. The machining condition 7 was the most similar to the simulation and the experimental results. The material properties of the NAK-80 material and the simulation trends reflected in the reverse design of the tool were derived similarly to the experimental results.

Topology Optimization of the Decking Unit in the Aluminum Bass Boat and Strength Verification using the FEM-program

  • Seo, Kwang-Cheol;Gwak, Jin;Park, Joo-Shin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.367-372
    • /
    • 2018
  • The objective of this paper is to optimize the cross-section of aluminum decking units used in the bass boats under operating conditions, and to verify the optimized model from the results via by ANSYS software. Aluminum decking unit is needed to endure specific loading while leisure activity and sailing. For a stiffer and more cost-neutral aluminum decking unit, optimization is often considered in the naval and marine industries. This optimization of the aluminum decking unit is performed using the ANSYS program, which is based on the topology optimization method. The generation of finite element models and stress evaluations are conducted using the ANSYS Multiphysics module, which is based on the Finite Element Method (FEM). Through such a series of studies, it was possible to determine the most suitable case for satisfying the structural strength found among the phase-optimized aluminum deck units in bass boats. From these optimization results, CASE 1 shows the best solution in comparison with the other cases for this optimization. By linking the topology optimization with the structural strength analysis, the optimal solution can be found in a relatively short amount of time, and these procedures are expected to be applicable to many fields of engineering.

Recalculation Research of Material properties for CFRP FEM Non-linear Analysis (CFRP FEM 비선형 해석을 위한 물성치 재확립에 관한 연구)

  • Kim, Jung-Ho;Kim, Chi-Joong;Cha, Cheon-Seok;Kim, Ji-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.608-612
    • /
    • 2012
  • To reduce these costs and time by finite element analysis program has been much research (3~4). At virtual CAE program as like Abaques, Ansys, Ls-dyna and Nastran, the input data of material is got bellow coupon test. In case of carbon composite, it is also put in lamina/laminate properties. There have big problem. If you want to simulate FW(filament winding or wind blade) how do you input material data. Each area of FW is different stacking conditions. It's too hard that each area is tested for inputting lamina or laminate properties. The composite structure increasing load is applied occurred as the matrix dependence of the crack-induced nonlinearity and nonlinear mobility appears since the initial damage. And uni-direction for this research applies the theory to have been confined to. On this study, we are going to get basically fiber properties and matrix than carbon composite properties for simulating according stacking method by GENOA-MCQ. It is help to simulate easily composite material. Also Calculate the matrix nonlinear for simulating non-linear.

A Development of Educational Procedure for Design and Analysis with a Linear Force Motor (Linear Force Motor를 이용한 설계와 해석 교육매체 개발)

  • Park, Chang Soon
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.4 no.1
    • /
    • pp.57-64
    • /
    • 2012
  • For design of a electrical Machine it is used conventional design methode to determine size with considering of magnetical circuit and windings. After this process, Flux density and Torque are calculated with FEM program. But most electrical machines are complicated in their configuration, therefore it is not easy to understand the design process and analyzing methode. We need to develop a educational material. In this paper using Linear force motor, which is relatively not complicated in their configuration and easy to understand the relationship between electro magnetics and force, will be explained the design process and calculating process with Finite element methode. And with FEM program will be calculated and illustrated flux density in each part and Force of the Linear force motor easy to understand.

  • PDF

Undrained Behaviour of Normally Consolidated Clay Foundation Using Single-Hardening Constitutive Model (단일황복면 구성모델을 이용한 정규압밀 점토지반의 비배수 거동해석)

  • Jeong, Jin Seob;Lee, Kang Ill;Park, Byung Kee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1229-1241
    • /
    • 1994
  • This study aims at investigating the undrained behavior of the normally consolidated clay foundation using single hardening constitutive model based on elasticity and plasticity theories. The specimen employed was sampled at Mooan near the down stream of Young San river and remolded into consolidation apparatus. 11 soil parameters for the model was determined from simple tests such as isotropic compression and consolidation undrained triaxial compression tests. FEM program to predict the undrained behavior of the foundation was developed and back analysis was performed to verify prediction ability of the FEM program. Finally plate load test on the 2-dimensional model foundation was carried out in order to compare numerical analysis and observed values on the foundation.

  • PDF

Development of a Sample Scanner for Atomic Force Microscope (원자 현미경용 샘플 스캐너의 개발)

  • Lee, Dong-Yeon;Lee, Moo-Yeon;Gweon, Dae-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.879-882
    • /
    • 2005
  • This paper shows a method for design of the nano-positioning planar scanner used in the scanning probe microscope. The planar scanner is composed of flexure guides, piezoelectric actuators and feedback sensors. In the design of flexure guides, the Castigliano's theorem was used to find the stiffness of the guide. The motion amplifying mechanism was used in the piezoelectric actuator to achieve a large travel range. We found theoretically the travel range of the total system and verified using the commercial FEM(Finite element method) program. The maximum travel range of the planar scanner is above than 140 $\mu$m. The 3 axis positioning capability was verified by the mode analysis using the FEM program. Moreover, we presented the actual AFM(Atomic Force Microscope) imaging results with up to 2Hz imaging scan rate. Experimental results show that the properties of the proposed planar scanner is well enough to be used in SPM applications like AFM.

  • PDF

Analysis on the Stress and Economy of Feeder Supporting Metal Designed a Steel Pipe (강관을 이용한 급전선금구의 응력해석 및 경제성 분석)

  • Na, Hyun;Ahn, Young-Hoon;Lee, Ki-Won
    • Journal of the Korean Society for Railway
    • /
    • v.11 no.5
    • /
    • pp.499-503
    • /
    • 2008
  • The catenary line and feeder line installed on same electrical pole in opened place of AC electrical rail-road. The Electrical pole has receive a different weight from the catenary line and feeder line. So we have designed the Feeder supporting metal with new shape and material based on this fact. And then we have examined the stability of Feeder supporting metal designed a steel pipe by FEM program. New steel pipe compared with existing steel pipe on a economy respect. That result give proof the stability and economy as feeder supporting steel. There-fore this device have a basic of Value Engineering, so we have the need of reflection to design as a device of new electrical pole.

A Study on Analysis Method of Asphalt Plug Joint using FEM (유한요소 해석을 통한 Asphalt Plug Joint의 분석 방법에 대한 연구)

  • Moon, Kyoung-Tae;Park, Philip;Park, Sang-Yeol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2D
    • /
    • pp.237-245
    • /
    • 2011
  • Asphalt Plug Joint(APJ) is a new type of expansion joint that it's application are increased in USA as well as several European countries. APJ's' advantages are cheap construction and maintenance costs, and simple construction and securing of excellent flatness. However, APJ's usability is hindered because it showed a problem of premature failure. Research for solving this problem has been progressed, and FEM analysis among existing researches was peformed. However, the behavior of APJ was insufficiently analyzed and the reliability of the analysis was much low, since the material showing complicated behavior was oversimplified, Therefore, a material model was proposed and its effectiveness was confirmed by comparing it with actual behavior in order to improve the reliability of FEM analysis in this paper. ABAQUS program was used for FEM analysis, and an elasto-plastic model and a viscous-plastic model as the material model of APJ were suggested on the base of experiment results of APJ material performed by Bramel et al. The elasto-plastic model was defined by time-independent analysis since it didn't consider time and strain rate, and the viscous-plastic model was defined by time-dependent analysis since it considered. Influence of various elements affecting the behavior of APJ was investigated, and it was confirmed that the time-dependent analysis showed better result closed to actual behavior than the time-independent analysis.