• Title/Summary/Keyword: FEM Forming

Search Result 388, Processing Time 0.021 seconds

A Study on Roll Wear in the Roll Forming Process (롤포밍 공정에서의 롤 마모에 관한 연구)

  • Kang, Byung-Seok;Kim, Nak-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1881-1888
    • /
    • 2003
  • This study show a numerical method to predict roll wear in the roll forming process. Archard's wear model was reformulated in an elemental form to predict volume of roll wear and then wear depth on the roll was calculated using the results of finite element analysis. Abrasive wear occurs at contact area in the roll forming process and the results of simulation are compared with experimental data in production line. The wear simulation approach with 3-D FEM program for roll forming process, SHAPE-RF is in good agreement with it in tendency.

Effect of Out-of- Plane Stress on the theoretical Forming Limit Strain of Sheet Metals (판재의 이론적 변형한계 스트레인의 면외압 의존성)

  • 정태훈
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.162-169
    • /
    • 2004
  • In press forming of sheet metals, the material sheet is usually subjected to very large plastic strain under in-plane stressing. Moreover, the sheet also very often is subjected to out-of-plane compressive force between tools such as the upper and lower dies, the blank holder and the die, and so forth. In this paper, it is clearly demonstrated theoretically that out-of-plane stress may notably raise the forming limit strain and thus it can be effectively utilized to avoid earlier fracture of the sheet in press forming.

  • PDF

Blank Design of The High Miniature Rectangular Vibrator Case for The Cellular Phone (Cellular Phone용 초소형 사각 진동모터 케이스의 블랭크 설계)

  • Ha, B.K.;Ku, T.W.;Kang, B.S.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.754-758
    • /
    • 2000
  • Milli-structure components are classified as component group whose size is between macro and micro scale. that is, about less than 20mm and larger than 1mm. The forming of these components has a typical phenomenon of bulk deformation with thin sheets because of the forming size. In order to conventional metal forming, where numerical process simulation is already fully applied, the micro-forming process is characterized by some scale effects which have to be considered in an advanced process simulation. milli-structure rectangular cup drawing is analyzed and designed using the finite element method and experiment. The result of the finite element analysis is confirmed by a series of experiments.

  • PDF

Development of FE Analysis Scheme for Milli-Part Forming Using Grain and Grain Boundary Element (입자요소를 이용한 미세 박판 부품의 유한요소 해석 기법 개발)

  • 구태완;김동진;강범수
    • Transactions of Materials Processing
    • /
    • v.11 no.5
    • /
    • pp.439-446
    • /
    • 2002
  • This study presents a new computational model to analyze the grain deformation in a polycrystalline aggregate in a discrete manner and based directly in the underlying physical micro-mechanisms. When scaling down a metal forming process, the dimensions of the workpiece decrease but the microstructure of the workpiece remains the similar. Since the dimensions of the workpiece are very small, the microstructure especially the grain size will play an important role in micro forming, which is called size effects. As a result, specific characteristics have to be considered for the numerical analysis. The grains and grain boundary elements are introduced to model individual grains and grain boundary facets, respectively, to consider the size effects in the micro forming. The constitutive description of the grain elements accounts for the rigid-plastic and the grain boundary elements for visco-elastic relationships. The capability of the proposed approach is demonstrated through application of grain element and grain boundary element in the micro forming.

Analytical study on High speed Shear forming Process of Lead-acid Battery Grids (연축전지 기판 격자의 고속 전단성형공정 해석적 연구)

  • Kim Dae-sung;Jung Jong-jun;Cho Hyung-chan;Lee Coon-man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.2 s.179
    • /
    • pp.81-87
    • /
    • 2006
  • This study has been focused on the analysis of high speed shear forming process for lead-acid battery grids. The grid plays an important role of electrical charge. It is necessary to ensure the best battery's performance that the grid should have a best quality. The clearance between punch and die, the velocity of punch and the critical damage value are very important parameters for making a good grid form. The finite element analysis of the shear forming process is carried out by measuring and optimizing these three important parameters. The result of this study concludes that these parameters has a great influence on grid quality.

A Study of prediction problem to Sheet metal forming processing (박판성형 공정에서의 불량 예측에 관한 연구)

  • Ko Hyung-Hoon;Lee Chan-Ho;Moon Won-Sub;Park Young-Keun;Jung Dong-Won
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.398-401
    • /
    • 2005
  • The characteristic of sheet metal process is the few loss of material during process, the short processing time and the excellent price and strength. Such press-forming process are the used machine ability and the characteristic, used material, the accuracy of the part which becomes processing and side condition of a process are considered and the designed. The purpose of this study is apply efficiently sheet metal forming processing by 3D formation-analyzed program simulations in the site. By a study, forming process was simulation to drawing and trimming and cam process using static-implicit method software. By making apply this to an industrial site the productivity improvement and cost reduction etc. effect able was predicted.

  • PDF

A Study on the Working Pressure of TBP Used in High Pressure (고압용 분기배관의 사용압력에 관한 연구)

  • Lee, Sung-Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.11
    • /
    • pp.781-787
    • /
    • 2010
  • To improve the efficiency of piping, recently the pre-fabrication piping system has been introduced, and much attention has been paid to TBPs which can replace Tee-joint. Forming and forming analysis on TBPs made from Carbon steel pipes for pressure service(KS D 3562 Sch40) and Stainless steel pipes(KS D 3576 20S) have been conducted to determine working pressure. Forming and forming analysis objects are $32A{\times}25A$, $40A{\times}25A$, $40A{\times}32A$, $50A{\times}25A$, $50A{\times}32A$, $50A{\times}40A$ TBPs.

Friction Model for Finite Element Analysis of Sheet Metal Forming Processes (박판 성형공정 유한요소 해석용 마찰모델)

  • Keum Y.T.;Lee B.H.
    • Transactions of Materials Processing
    • /
    • v.13 no.6 s.70
    • /
    • pp.528-534
    • /
    • 2004
  • In order to find the effect of lubricant viscosity, tool geometry, forming speed, and sheet material properties on the friction in the sheet metal forming, friction tests were performed. Friction test results show that as the lubricant viscosity becomes lower, the friction coefficient is higher. When surface roughness is extremely low or high, the friction coefficient is high. The bigger die corner radii and punch speed are, the smaller is the friction coefficient. From the experimental observation, the friction model which is the mathematical expression of friction coefficient in terms of lubricant viscosity, roughness and hardness of sheet surface, punch corner radius, and punch speed is constructed. By comparing the punch load found by FEM using the proposed friction model with that obtained from the experiment in 2-D stretch forming, the validity and accuracy of the friction model are demonstrated.

A Study on the Process Sequence Design of a Tub for the Washing Machine Container (세탁조의 제작공정해석 및 공정개선에 관한 연구)

  • 임중연;이호용;황병복
    • Transactions of Materials Processing
    • /
    • v.3 no.3
    • /
    • pp.359-374
    • /
    • 1994
  • Process sequence design in sheet metal forming process by the finite element method is investigated. The forming of sheet metal into a washing machine container is used to demonstrate the design of an improved process sequence which has fewer operations. The design procedure makes extensive use of the finite element method which has simulation capabilities of elastic-plastic modeling. A one-stage process to make an initial blank to the final product is simulated to obtain information on metal flow requirements. Loading simulation for a conventional method is also performed to evaluate the design criteria which are uniform thickness distribution around the finished part and maximum punch load within limit of available press capacity. The newly designed sequence has two forming operations and can achieve net-shape manufacturing, while the conventional process sequence has three forming operations. This specific case conventional process sequence has three forming operations. This specific case can be considered for application of the method and for development of the sequence design methodology in general.

  • PDF

Use of a Drawing Process to Manufacture a Large-Size Dome Shaped Forging-Produts (드로잉 공정을 이용한 대형 반구 형상 제작에 관한 연구)

  • Lee, S.U.;Cho, J.R.;Yang, D.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.531-534
    • /
    • 2008
  • A new forming process of the large-size forging within the limit of forming loads is developed by introducing the drawing process, which usually used to apply to sheet forming. For the development of the forming process, corresponding numerical simulation are carried out. The approach is based on the Taguchi method, and utilize the DOE for design of FEM analyses. In this study, the important factors are chosen at first, and then the concept of signal-to-nose(S/N) rate is applied to evaluate the formability of large size forging-products, and each value of the design parameter is determined.

  • PDF