• Title/Summary/Keyword: FEM(finite element analysis)

Search Result 2,809, Processing Time 0.035 seconds

A Study on the Parameters of Design for Warpage reduction of Passive components Embedded Substrate for PoP (PoP용 패시브 소자 임베디드 기판의 warpage 감소를 위한 파라메타 설계에 관한 연구)

  • Cho, Seunghyun;Kim, Dohan;Oh, Youngjin;Lee, Jongtae;Cha, Sangsuk
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.75-81
    • /
    • 2015
  • In this paper, numerical analysis by finite element method and parameter design by the Taguchi method were used to reduce warpage of a two passive components embedded double side substrate for PoP(Package on Package). The effect of thickness of circuit layers (L1, L2) and thickness of solder resist (SR_top, SR_BTM) were analyzed with 4 variations and 3 levels(minimum, average and maximum thickness) to find optimized thickness conditions. Also, paste effect of solder resist on unit area of top surface was analyzed. Finally, experiments was carried out to prove numerical analysis and the Taguchi method. Based on the numerical and experimental results, it was known that circuit layer in ball side of substrate was the most severe determining deviation for reducing warpage. Buried circuit layer in chip side, solder resist and were insignificant effects on warpage relatively. However, warpage decreased as circuit layer in ball side thickness increased but effect of solder resist and circuit layer in chip side thickness were conversely.

Magnetic Flux Leakage based Damage Quantification of Steel Bar (누설자속기법을 이용한 강봉의 손상 정량화 기법)

  • Park, Jooyoung;Kim, Ju-Won;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.63-70
    • /
    • 2017
  • In this paper, a magnetic flux leakage(MFL) based steel bar damage detection was first researched to quantify the signals from damages on the wire rope. Though many researches inspecting damages using a MFL method was proceeded until the present, the researches are at the level that diagnose whether damages are or not. This has limitation to take measures in accordance with the damage level. Thus, a MFL inspection system was modeled using a finite element analysis(FEM) program dealing with electromagnetism problems, and a steel bar specimen was adopted as a ferromagnetic object. Then, an experimental study was also carried out to verify the simulation results with a steel bar which has same damage conditions as the simulation. The MFL signals was nearly not affected by the increase of the inspection velocity, and the magnitudes of the signals are not identical according to the change of the defect width even the defects have same depth. On the basis of the analysis, the signal properties from the damages were extracted to classify the type of damages, and it could be confirmed that classification of damages using extracted signal properties is feasible.

FE Analysis on the Structural Behavior of a Double-Leaf Blast-Resistant Door According to the Support Conditions (지지조건 변화에 따른 양개형 방폭문의 구조거동 유한요소해석)

  • Shin, Hyun-Seop;Kim, Sung-Wook;Moon, Jae-Heum;Kim, Won-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.5
    • /
    • pp.339-349
    • /
    • 2020
  • Double-leaf blast-resistant doors consisting of steel box and slab are application-specific structures installed at the entrances of protective facilities. In these structural systems, certain spacing is provided between the door and wall. However, variation in the boundary condition and structural behavior due to this spacing are not properly considered in the explosion analysis and design. In this study, the structural response and failure behavior based on two variables such as the spacing and blast pressure were analyzed using the finite element method. The results revealed that the two variables affected the overall structural behavior such as the maximum and permanent deflections. The degree of contact due to collision between the door and wall and the impact force applied to the door varied according to the spacing. Hence, the shear-failure behavior of the concrete slab was affected by this impact force. Doors with spacing of less than 10 mm were vulnerable to shear failure, and the case of approximately 15-mm spacing was more reasonable for increasing the flexural performance. For further study, tests and numerical research on the structural behavior are needed by considering other variables such as specifications of the structural members and details of the slab shear design.

A Study on the Interfacial Bonding in AlN Ceramics/Metals Joints: I. Residual Stress Analysis of AlN/Cu and AlN/W Joints Produced by Active-Metal Brazing (AlN 세라믹스와 금속간 계면접합에 관한 연구 : I. AlN/Cu 및 AlN/W 활성금속브레이징 접합체의 잔류응력 해석)

  • Park, Sung-Gye;Lee, Seung-Hae;Kim, Ji-Soon;You, Hee;Yum, Young-Jin
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.962-969
    • /
    • 1999
  • Elastic and elasto-plastic stress analyses of AlN/Cu and AlN/W pints produced by active-metal brazing method using Ag-Cu-Ti insert-metal were performed with use of Finite-Element-Method(FEM). The results of stress analyses were compared with those from the pint strength tests and the observations of fracture behaviors. It was shown that a remarkably larger maximum principal stress is built in the AlN/Cu pint compared to the A1N/ W joint. Especially, the stress concentration with tensile component was confirmed at the free surface close to the bonded interface of AlN/Cu. The elasto-plastic analysis under consideration of stress relaxation effect of Ag-Cu-Ti insert possessing a so-called 'soft-metal effect' showed that the insert leads to a lowering of maximum principal stress in AlNiCu pint, even though an increase of the insert thickness above 100$\mu\textrm{m}$ could not bring its further decrease. The maximum pint strengths measured by shear test were 52 and 108 MPa for AlNiCu and AlN/W pints. respectively. Typical fractures of AlN/Cu pints occurred in a form of 'dome' which initiated from the free surface of AlN close to the bonded interface and proceeded towards the AlN inside forming a large angle. AlN/W pints were usually fractured at AlN side along the interface of AlN/insert-metal.

  • PDF

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

An Analytical Study on the Behavior of Slab Structure Considering the Remodeling (리모델링 공사를 고려한 슬래브 구조물의 거동에 관한 해석적 연구)

  • Choi, Hoon;Joo, Hyung-Joong;Lee, Seung-Sik;Yoon, Soon-Jong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.106-112
    • /
    • 2010
  • Due to the improvement and stabilization of the social environment, construction market in the urban region is under shrinking. According, researches to lengthen the service life of the existing building structures are under the way through the remodeling or maintenance of deteriorated structures other than the new constructions. Similar situations are widely discussed in the domestic building construction market and the social importance of the remodeling of the existing building structures is increased. Although the structural stability of the building is uncertain due to the frequent repairing and structural changing, the remodeling works are usually conducted. In general, documents such as drawings and calculations for the design of the deteriorated structure to be remodeled are not kept. Accident at the remodeling site frequently occur because of the lack of thorough understanding of changed situations such as loadings, loading paths, changing of the mechanical properties of material, etc. In this paper, using the finite element analysis method, we investigated the structural behaviors of slab in the remodeling building and the results are applied to remodeling construction, and the appropriateness of the remodeling works are evaluated.

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Effect of the initial imperfection on the response of the stainless steel shell structures

  • Ali Ihsan Celik;Ozer Zeybek;Yasin Onuralp Ozkilic
    • Steel and Composite Structures
    • /
    • v.50 no.6
    • /
    • pp.705-720
    • /
    • 2024
  • Analyzing the collapse behavior of thin-walled steel structures holds significant importance in ensuring their safety and longevity. Geometric imperfections present on the surface of metal materials can diminish both the durability and mechanical integrity of steel shells. These imperfections, encompassing local geometric irregularities and deformations such as holes, cavities, notches, and cracks localized in specific regions of the shell surface, play a pivotal role in the assessment. They can induce stress concentration within the structure, thereby influencing its susceptibility to buckling. The intricate relationship between the buckling behavior of these structures and such imperfections is multifaceted, contingent upon a variety of factors. The buckling analysis of thin-walled steel shell structures, similar to other steel structures, commonly involves the determination of crucial material properties, including elastic modulus, shear modulus, tensile strength, and fracture toughness. An established method involves the emulation of distributed geometric imperfections, utilizing real test specimen data as a basis. This approach allows for the accurate representation and assessment of the diversity and distribution of imperfections encountered in real-world scenarios. Utilizing defect data obtained from actual test samples enhances the model's realism and applicability. The sizes and configurations of these defects are employed as inputs in the modeling process, aiding in the prediction of structural behavior. It's worth noting that there is a dearth of experimental studies addressing the influence of geometric defects on the buckling behavior of cylindrical steel shells. In this particular study, samples featuring geometric imperfections were subjected to experimental buckling tests. These same samples were also modeled using Finite Element Analysis (FEM), with results corroborating the experimental findings. Furthermore, the initial geometrical imperfections were measured using digital image correlation (DIC) techniques. In this way, the response of the test specimens can be estimated accurately by applying the initial imperfections to FE models. After validation of the test results with FEA, a numerical parametric study was conducted to develop more generalized design recommendations for the stainless-steel shell structures with the initial geometric imperfection. While the load-carrying capacity of samples with perfect surfaces was up to 140 kN, the load-carrying capacity of samples with 4 mm defects was around 130 kN. Likewise, while the load carrying capacity of samples with 10 mm defects was around 125 kN, the load carrying capacity of samples with 14 mm defects was measured around 120 kN.

Analysis of thermal changes in bone by various insertion torques with different implant designs (서로 다른 형태의 임플란트의 식립토크가 골에 미치는 열변화에 관한 연구)

  • Kim, Min-Ho;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Seok;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.168-176
    • /
    • 2011
  • Purpose: This study aims at investigating the influence of various insertion torques on thermal changes of bone. A proper insertion torque is derived based on the thermal analysis with two different implant designs. Materials and methods: For implant materials, bovine scapula bone of 15 - 20 mm thickness was cut into 35 mm by 40 - 50 mm pieces. Of these, the pieces having 2 - 3 mm thickness cortical bone were used as samples. Then, the half of the sample was immersed in a bath of $36.5^{\circ}C$ and the other half was exposed to ambient temperature of $25^{\circ}C$, so that the inner and surface temperatures reached $36.5^{\circ}C$ and $28^{\circ}C$, respectively. Two types of implants ($4.5{\times}10\;mm$ Br${\aa}$nemark type, $4.8{\times}10\;mm$ Microthread type) were inserted into bovine scapula bone and the temperature was measured by a thermocouple at 0.2 mm from the measuring point. Finite element method (FEM) was used to analyze the thermal changes at contacting surface assuming that the sample is a cube of $4\;cm{\times}4\;cm{\times}2\;cm$ and a layer up to 2 mm from the top is cortical bone and below is a cancellous bone. Boundary conditions were set on the basis of the shape of cavity after implants. SolidWorks was used as a CAD program with the help of Abaqus 6.9-1. Results: In the in-vitro experiment, the Microhead type implant gives a higher maximum temperature than that of the Br${\aa}$nemark type, which is attributed to high frictional heat that is associated with the implant shape. In both types, an Eriksson threshold was observed at torques of 50 Ncm (Br${\aa}$nemark) and 35 Ncm (Microthread type), respectively. Based on these findings, the Microthread type implant is more affected by insertion torques. Conclusion: This study demonstrate that a proper choice of insertion torque is important when using a specific type of implant. In particular, for the Microthread type implant, possible bone damage may be expected as a result of frictional heat, which compensates for initial high success rate of fixation. Therefore, the insertion torque should be adjusted for each implant design. Furthermore, the operation skills should be carefully chosen for each implant type and insertion torque.