• 제목/요약/키워드: FEM(Finite Element Model)

검색결과 1,338건 처리시간 0.026초

결정소성학을 이용한 교차압연시의 집합조직과 소성이방성의 예측 (Predictions of Texture Evolution and Plastic Anisotropy by Cross Rolling Based on Crystal Plasticity)

  • 김동수;원성연;손현성;김영석
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.309-312
    • /
    • 2001
  • FEM simulating system of the cross-rolling texture formation offers a systematic and efficient way of exploring the relationship between the process variables and the state of plastic anisotropy of sheet product. Cross-rolled sheets possess higher average plastic strain ratios and lower planer anisotropy than those of the straight-rolled sheets. The employed model is a finite-element polycrystal model which each element used in FEM is assumed to be a crystal having different orientation by Takahashi. Texture development, deformation textures due to cross-rolling are predicted for face-centered cubic sheet metal. Crystal orientations are assigned on the basis of the pole figures obtained by X-ray diffraction. Development of anisotropy during cross rolling of an fcc sheet material is predicted theoretically with respected to flow stress and R-value in tensile test.

  • PDF

퍼지이론을 이용한 FEM 모델링을 위한 자동 요소분할 시스템 (Automatic Mesh Generation System for a Novel FEM Modeling Based on Fuzzy Theory)

  • 이양창;이준성;최윤종;김남용
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.343-348
    • /
    • 2005
  • This paper describes an automatic finite element (FE) mesh generation for three-dimensional structures consisting of free-form surfaces. This mesh generation process consists of three subprocesses: (a) definition of geometric model, i.e. analysis model, (b) generation of nodes, and (c) generation of elements. One of commercial solid modelers is employed for three-dimensional solid structures. Node is generated if its distance from existing node points is similar to the node spacing function at the point. The node spacing function is well controlled by the fuzzy knowledge processing. The Delaunay method is introduced as a basic tool for element generation. Automatic generation of FE meshes for three-dimensional solid structures holds great benefits for analyses. Practical performances of the present system are demonstrated through several mesh generations for three-dimensional complex geometry.

하천에서의 동수력학적 유동해석을 위한 유한요소모형의 개발 (Finite Element Model for the Hydrodynamic Analysis in a River)

  • 한건연;이종태;김홍태
    • 물과 미래
    • /
    • 제26권3호
    • /
    • pp.87-101
    • /
    • 1993
  • 하천에서의 동수역학적 유동해석을 위하여 2차원 천수방정식을 기본방정식으로 하고 이를 불연속구간함수와 upwinding weighting을 도입한 감쇠형 Galerkin 방법에 의하여 해석하는 RIV-FEM2를 개발하였다. RIV-FEM2는 전처리, 주처리, 후처리 과정으로 구성되었으며, 전처리와 주처리 과정은 Fortran-77으로, 후처리 과정은 turbo-Pascal에 의하여 각각 처리할 수 있도록 개발하였다. 2차원의 만곡부, 교량부, 축소부를 가진 대칭수로부등의 경우와 실제 하천에 대하여 본 모형을 적용한 결과 유속분포, 수면형 및 질량 유출입량 보존등의 면에서 안정성과 효율성이 우수하게 나타나 본 모형의 적용성을 입증할 수 있었다. 본 모형은 실제 하천의 이수 및 치수관리에 기여할 수 있을 것으로 판단된다.

  • PDF

인두기능의 3차원적 생체역학 모델에 관한 연구 (A study on the three-dimensional biomechanical model of the human pharyngeal function)

  • 김성민;김남현
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1852-1855
    • /
    • 1997
  • A three-dimensional biomechanical modle is proposed in order to simulate human pharyngeal function based on the FEM(Finite Element Method) utilizing optimization procedure.

  • PDF

이방성 자왜 모델을 기반으로 한 변압기 자왜력의 유한요소 해석 (Finite Element Analysis of Magnetostriction Force in Transformer Based on an Anisotropic Magnetostriction Model)

  • 주립훈;정길균;고창섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.772-773
    • /
    • 2015
  • This paper presents a dynamic model of 2-D magnetostriction in electrical steel sheet (ESS) under rotating flux magnetization conditions and its implementation in finite element method (FEM). For an arbitrary waveform of magnetic flux density (B), the corresponding magnetostriction waveform can be predicted by the model. In order to apply the model to FEM easily, the model is based on trilinear interpolation method. As an example, the model is applied to a three-phase transformer constructed by highly grain-oriented electrical steel sheets and the numerical results by the magnetostriction model are discussed.

  • PDF

LNG 압력용기의 설계 (A LNG Pressure Vessel Design)

  • 김정위
    • Journal of Welding and Joining
    • /
    • 제18권4호
    • /
    • pp.28-37
    • /
    • 2000
  • In this paper the LNG vessel of the Moss type which is capable of lifting 15,261 tons is investigated in the view point of the pressure vessel preliminary design using the finite element method. The Pressure vessel design is based on the equivalent stress levels due to the internal pressure. The finite element model of the spherical pressure vessel is configured using 4 noded quadrilateral shell element. The finite element analysis program NASTRAN and ANSYS 5.5are implemented. The design is compared with the three kinds of the boundary condition : first, where the equator of the pressure vessel is fixed, and where the top and is fixed, and, the bottom end is fixed, respectively. A comparison is presented between the results obtained by the finite element model and by the prototype production model. Additionally just below position(case 1 & case 2) of equator ring was carried out by using ANSYS 5.5. The results show that the vessel design based on the stress is acceptable at the preliminary design.

  • PDF

Parametric study using finite element simulation for low cycle fatigue behavior of end plate moment connection

  • Lim, Chemin;Choi, Wonchang;Sumner, Emmett A.
    • Steel and Composite Structures
    • /
    • 제14권1호
    • /
    • pp.57-71
    • /
    • 2013
  • The prediction of the low cycle fatigue (LCF) life of beam-column connections requires an LCF model that is developed using specific geometric information. The beam-column connection has several geometric variables, and changes in these variables must be taken into account to ensure sufficient robustness of the design. Previous research has verified that the finite element model (FEM) can be used to simulate LCF behavior at the end plate moment connection (EPMC). Three critical parameters, i.e., end plate thickness, beam flange thickness, and bolt distance, have been selected for this study to determine the geometric effects on LCF behavior. Seven FEMs for different geometries have been developed using these three critical parameters. The finite element analysis results have led to the development of a modified LCF model for the critical parameter groups.

Analysis of thermo-rheologically complex structures with geometrical nonlinearity

  • Mahmoud, Fatin F.;El-Shafei, Ahmed G.;Attia, Mohamed A.
    • Structural Engineering and Mechanics
    • /
    • 제47권1호
    • /
    • pp.27-44
    • /
    • 2013
  • A finite element computational procedure for the accurate analysis of quasistatic thermorheological complex structures response is developed. The geometrical nonlinearity, arising from large displacements and rotations (but small strains), is accounted for by the total Lagrangian description of motion. The Schapery's nonlinear single-integral viscoelastic constitutive model is modified for a time-stress-temperature-dependent behavior. The nonlinear thermo-viscoelastic constitutive equations are incrementalized leading to a recursive relationship and thereby the resulting finite element equations necessitate data storage from the previous time step only, and not the entire deformation history. The Newton-Raphson iterative scheme is employed to obtain a converged solution for the non-linear finite element equations. The developed numerical model is verified with the previously published works and a good agreement with them is found. The applicability of the developed model is demonstrated by analyzing two examples with different thermal/mechanical loading histories.

3-D finite element modelling of prestressed hollow-core slabs strengthened with near surface mounted CFRP strips

  • Mahmoud, Karam;Anand, Puneet;El-Salakawy, Ehab
    • Computers and Concrete
    • /
    • 제21권6호
    • /
    • pp.607-622
    • /
    • 2018
  • A non-linear finite element model (FEM) was constructed using a three-dimensional software (ATENA-3D) to investigate the effect of strengthening on the behavior of prestressed hollow-core (PHC) slabs with or without openings. The slabs were strengthened using near surface mounted (NSM)-carbon fiber reinforced polymer (CFRP) strips. The constructed model was validated against experimental results that were previously reported by the authors. The validated FEM was then used to conduct an extensive parametric study to examine the influence of prestressing reinforcement ratio, compressive strength of concrete and strengthening reinforcement ratio on the behavior of such slabs. The FEM results showed good agreement with the experimental results where it captured the cracking, yielding, and ultimate loads as well as the mid-span deflection with a reasonable accuracy. Also, an overall enhancement in the structural performance of these slabs was achieved with an increase in prestressing reinforcement ratio, compressive strength of concrete, external reinforcement ratio. The presence of openings with different dimensions along the flexural or shear spans reduced significantly the capacity of the PHC slabs. However, strengthening these slabs with 2 and 4 (64 and $128mm^2$ that represent reinforcement ratios of 0.046 and 0.092%) CFRP strips was successful in restoring the original strength of the slab and enhancing post-cracking stiffness and load carrying capacity.

Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack

  • Yaylaci, Murat;Yaylaci, Ecren Uzun;Ozdemir, Mehmet Emin;Ay, Sevil;Ozturk, Sevval
    • Steel and Composite Structures
    • /
    • 제45권4호
    • /
    • pp.501-511
    • /
    • 2022
  • In this study, a two-dimensional model of the contact problem has been examined using the finite element method (FEM) based software ANSYS and based on the multilayer perceptron (MLP), an artificial neural network (ANN). For this purpose, a functionally graded (FG) half-infinite layer (HIL) with a crack pressed by means of two rigid blocks has been solved using FEM. Mass forces and friction are neglected in the solution. Since the problem is analyzed for the plane state, the thickness along the z-axis direction is taken as a unit. To check the accuracy of the contact problem model the results are compared with a study in the literature. In addition, ANSYS and MLP results are compared using Root Mean Square Error (RMSE) and coefficient of determination (R2), and good agreement is found. Numerical solutions are made by considering different values of external load, the width of blocks, crack depth, and material properties. The stresses on the contact surfaces between the blocks and the FG HIL are examined for these values, and the results are presented. Consequently, it is concluded that the considered non-dimensional quantities have a noteworthy influence on the contact stress distributions, and also, FEM and ANN can be efficient alternative methods to time-consuming analytical solutions if used correctly.