• Title/Summary/Keyword: FEF

Search Result 77, Processing Time 0.027 seconds

Role of Methacholine PC20 in FEF25-75% for the Diagnosis of Bronchial Asthma

  • Son, Kyeong Min;Jang, Seung Hun;Kang, Hye Ryun;Han, Bo Ram;Kim, Joo Hee;Kim, Hyun Sung;Park, Sung Hoon;Hwang, Yong Il;Kim, Dong Gyu;Jung, Ki Suck
    • Tuberculosis and Respiratory Diseases
    • /
    • v.67 no.4
    • /
    • pp.311-317
    • /
    • 2009
  • Background: The methacholine bronchial provocation test is a useful tool for evaluating asthma in patients with normal or near normal baseline lung function. However, the sensitivity of this test is 82~92% at most. The purpose of this study is to evaluate the clinical usefulness of $FEF_{25-75%}$ in identification of airway hyperresponsiveness in patients with suspected asthmatic symptoms. Methods: One hundred twenty-five patients who experienced cough and wheezing within one week prior to their visiting the clinic were enrolled. Results: Sixty-four subjects showed no significant reduction of $FEV_{1}$ or $FEF_{25-75%}$ on the methacholine bronchial provocation test (Group I). In 24 patients, $FEF_{25-75%}$ fell more than 20% from baseline without a 20% fall of $FEV_{1}$ during methacholine challenge (Group II). All patients who had more than 20% fall of $FEV_{1}$ (n=37) also showed more than 20% of reduction in $FEF_{25-75%}$ (Group III). Baseline $FEV_{1}$/FVC (%) and $FEF_{25-75%}$ (L) were higher in group II than group III (81.51${\pm}$1.56% vs. 75.02${\pm}$1.60%, p<0.001, 3.25${\pm}$0.21 L vs. 2.45${\pm}$0.21 L, p=0.013, respectively). Group II had greater reductions of both $FEV_{1}$ and $FEF_{25-75%}$ than group I at 25 mg/mL of methacholine (p<0.001). The provocative concentration of methacholine causing a 20% fall in $FEF_{25-75%}$ in group II was about three-fold higher than that in group III. Conclusion: A 20% fall of $FEF_{25-75%}$ by methacholine provocation can be more sensitive indicator for detecting a milder form of airway hyperresponsiveness than $FEV_{1}$ criteria.

Correlations Between Height and Forced Expiratory Flow Curve Parameters (신장과 노력성 호기곡선 지표간의 상관성)

  • Jin, Bok Hee;Park, Sun Young;Park, Hyea Lim
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.199-204
    • /
    • 2004
  • Height has become one of the most important factors to determine the pulmonary function test index, and there is a high correlation between them, so that they have been utilized for evaluating pulmonary function test predictive value or nomogram. Therefore, we have tried to find out that difference and if there is any correlation and linear relationship between height and forced expiratory flow curve. There were a total of 163 subjects, male 93 and female 70. This study was done at the Department of Pulmonary Function Test of Jeon-Ju Presbyterian Hospital and we measured the index at the forced expiratory flow curve of FVC, $FEV_{1.0}$, $FEV_{1.0}$/FVC, $FEF_{25-75%}$, and $FEF_{200-1200m{\ell}}$. When we subjected the group of height more than 160cm, there were gradual increments at FVC(p<0.001), $FEV_{1.0}$(p<0.001), $FEF_{25-75%}$(p<0.05) and $FEF_{200-1200m{\ell}}$(p<0.001), but no changes at $FEV_{1.0}$/FVC in terms of forced expiratory flow curve index. We have analyzed the relationship between height and forced expiratory flow curve, there was a close relationship at FVC(r=0.670, p<0.01), $FEV_{1.0}$(r=0.491, p<0.01), $FEF_{25-75%}$ (r=0.175, p<0.05) and $FEF_{200-1200m{\ell}}$(r=0.370, p<0.01) but there was reciprocal relationship at $FEV_{1.0}$/FVC(r=-0.215, p<0.01). We have tried simple regression analysis to see if height affects forced expiratory flow curve index as a sector, and the result was $FVC(\ell)=0.0642{\times}height(cm)-7.2978$(p<0.01, $R^2=0.449$), $FEV_{1.0}(\ell)=0.0407{\times}height(cm)-4.2774$ (p<0.01, $R^2=0.2411$), $FEV_{1.0}/FVC(%)=-0.2892{\times}height(cm)+121.44$(p<0.01, $R^2=0.0464$), $FEF_{25-75%}(\ell/sec)=0.0176{\times}height(cm)-0.7876$(p<0.05, $R^2=0.0237$), $FEF_{200-1200m{\ell}}(\ell/sec)=0.0967{\times}height(cm)-11.037$(p<0.01, $R^2=0.1214$) this was approved statistically. According to this study, if height is taller than average, forced expiratory flow curve index were increased, there was a close relationship between height and forced expiratory flow curve, and there was a linear relationship as sector between height and forced expiratory flow curve index. Therefore, researches that study other factors such as sex, age, weight, body surface area, and obesity indexes other than height should be done to see if there are any further relationships.

  • PDF

Pulmonary Function Following Open Heart Surgery -early and late postoperative changes- (개심술후 폐기능 -수술직후 및 장기간의 추이에 대하여-)

  • 이성행
    • Journal of Chest Surgery
    • /
    • v.13 no.4
    • /
    • pp.364-374
    • /
    • 1980
  • Twenty-two patients were selected for evaluation of pre-and postoperative pulmonary function. These patients were performed open cardiac surgery with the extracorporeal circulation from March 1979 to July 1980 at the Department of Thoracic and Cardiovascular Surgery, Kyungbook National University Hospital. Patients were classified with ventricular septal defect 5 cases, atrial septal defect 5 cases, tetralogy of Fallot 5 cases, mitral stenosis 4 cases, rupture of aneurysm of sinus Valsalva 1 case, left atrial myxoma I case, and aortic insufficiency 1 case. The pulmonary function tests were performed and listed: [1] respiratory rate, tidal volume [TV], and minute volume[MV], [2] forced vital capacity [FVC] and forced expiratory volume[FEV 0.5 & FEV 1.0], [3] forced expiratory flow [FEF 200-1200 ml & FEF 25-75%]. [4] Maximal voluntary ventilation [MVV], [5] residual volume [RV] and functional residual capacity[FRC], measured by a helium dilution technique. Respiratory rate increased during the early postoperative days and tidal volume decreased significantly. These values returned to the preoperative levels after postoperative 5-6 days. Minute volume decreased slightly, but essentially unchanged. Preoperative mean values of the forced vital capacity, functional residual capacity and total lung capacity decreased [63.2%, 87.2% & 77.3% predicted, respectively], and early postoperatively these values decreased further [19.6%, 76.0% & 38.0% predicted], but later progressively increased to the preoperative levels. In residual volume, there was no decline in the preoperative mean values [100.9% predicted] and postoperatively the value rather increased [106.3-161.7% predicted]. Forced expiratory volume [FEV 0.5 & FEV 1.0] and forced expiratory flow [FEF 200-1200 ml & FEF 25-75%] also revealed significant declines in the early postoperative period. There was no significant difference in values of the spirometric pulmonary function tests, such as FEF 1.O and FEF 25-75% between successful weaning group [17 cases] extubated within 24 hrs post-operatively and unsuccessful weaning group [5 cases] extubated beyond 24 hrs. Static compliance and airway resistance measured for the two cases during assisted ventilation, however, any information was not obtained. Long term follow-up pulmonary function studies were carried out for 8 cases in 9 months post-operatively. All of the results returned to the pre-operative or to normal predicted levels except FVC, FEV 1.0, and FEF 25-75% those showed minimal declines compared to the pre-operative figures.

  • PDF

Postoperative Changes of Pulmonary Function in Chest Surgery (개흉후 폐기능 변화에 대한 연구)

  • Jo, Gwang-Jo;Jeong, Hwang-Gyu
    • Journal of Chest Surgery
    • /
    • v.25 no.11
    • /
    • pp.1169-1179
    • /
    • 1992
  • To determine the period and degree of full recovery of postoperative pulmonary function, the author performed seiral pulmonry function test with spirometry at preoperative period and 1st, 2nd, 3rd, 4th, 6th and 8th postoperative week in 64 patients who underwent chest surgery form 1990. 1. to 1990. 8. at Dep. of Thoracic & Cardiovascular surgery, Pusan National University Hospitcal, Pusan, Korea 28 patients underwent lung resection[Group A], 14 patients mediastinal and other thoracic surgery[Group B], and 22 patients heart surgery with cardiopulmonary bypass[Group C]. Al of them recovered normally and discharged without any complications. Their serial changes of pulmonary function test were compaired and its results was as follows; l. Over all mean recovery time of restrictive ventilatory function tests[ie, VC, ERV, IC, FEF1, FVC, FEF200-1200, MVV] were 4th & 6th postoperative week, and that of obstructive ventilatory function tests[ie., EFE25-75%, Vmax50] were 2nd postoperative week. 2. In patient who underwent lung resection surgery[Group A], FEF1 recovered in 4th~6th postoperative week and its ratio to preoperative value was 70% in pneumonectomy, and 75% in lobectomy. FVC recovered in 4th~6th postoperative week and its ratio to preoperative value was 65% in pneumonectomy, and 80% in lobectomy. MVV was recovered in 4th~8th postoperative week and recovery ratio was 80%, FEF200-1200 was recovered at 4th~6th postoperative week and its recovery ratio was 70%, FEF25-75% and Vmax50 was recovered in 2nd~4th postoperative week and recovered nearly to preoperative level. 3. In patient who underwent mediastinal and other thoracic surgery[Group B], FEV1 and FVC and recovered in 4th~6th postoperative week and the recovery ratio of FVC in blebectomy was 90%. MVV reached preoperative level in 4th~8th postoperative week. FEF200-1200, FEF25-75% and Vmax50 were recovered in 2nd~4th postoperative week and the recovery of FEF25-75% and Vmax50 in blebectomy was prominant. 4. In patient who underwent heart surgery[Group C], FEV1 and FVC were recovered in 4th~6th postoperative week. The recover ratio of FEF25-75% and Vmax50 was delaied to 6th~8th postoperative week From the above results we concluded that the recovery time of posoperative restrictive ventilatory disorder was 4th postoperative week and pulmonary complication would possibly occure during that period. So more intensive observations will be needed.

  • PDF

Prediction of Brobchodilator Response by Using $FEF_{25{\sim}75%}$ in Adult Patient with a Normal Spirometry Result (정상 폐활량을 보이는 성인 환자에서 $FEF_{25{\sim}75%}$를 통한 기관지확장제 반응의 예견)

  • Park, Se-Hwan;Lee, Seung-Yup;Kang, Seung-Mo;Seon, Choon-Sik;Kim, Hyun-Kyung;Lee, Byoung-Hoon;Lee, Jae-Hyung;Kim, Sang-Hoon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.3
    • /
    • pp.188-194
    • /
    • 2011
  • Background: When patients with chronic respiratory symptoms have a normal spirometry result, it is not always easy to consider bronchial asthma as the preferential diagnosis. Forced expiratory flow between 25% and 75% of vital capacity ($FEF_{25{\sim}75%}$) is known as a useful diagnostic value of small airway diseases. However, it is not commonly used, because of its high individual variability. We evaluated the pattern of bronchodilator responsiveness (BDR) and the correlation between $FEF_{25{\sim}75%}$ and BDR in patients with suspicious asthma and normal spirometry. Methods: Among patients with suspicious bronchial asthma, 440 adult patients with a normal spirometry result (forced expiratory volume in one second [$FEV_1$]/forced vital capacity [FVC] ${\geq}70%$ & $FEV_1%$ predicted ${\geq}80%$) were enrolled. We divided this group into a positive BDR group (n=43) and negative BDR group (n=397), based on the result of BDR. A comparison was carried out of spirometric parameters with % change of $FEV_1$ after bronchodilator (${\Delta}FEV_1%$). Results: Among the 440 patients with normal spirometry, $FEF_{25{\sim}75%}%$ predicted were negatively correlated with ${\Delta}FEV_1%$ (r=-0.22, p<0.01), and BDR was positive in 43 patients (9.78%). The means of $FEF_{25{\sim}75%}%$ predicted were $64.0{\pm}14.5%$ in the BDR (+) group and $72.9{\pm}20.8%$ in the BDR (-) group (p<0.01). The negative correlation between $FEF_{25{\sim}75%}%$ predicted and ${\Delta}FEV_1%$ was stronger in the BDR (+) group (r=-0.38, p=0.01) than in the BDR (-) group (r=-0.17, p<0.01). In the ROC curve analysis, $FEF_{25{\sim}75%}$ at 75% of predicted value had 88.3% sensitivity and 40.3% specificity for detecting a positive BDR. Conclusion: BDR (+) was not rare in patients with suspicious asthma and normal spirometry. In these patients, $FEF_{25{\sim}75%}%$ predicted was well correlated with BDR.

The Evaluation of Surface Crack in Paramagnetic Material by FEF Technique (FEF 탐상법을 이용한 상자성체 표면결함 평가)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.532-537
    • /
    • 2004
  • FEF(Focused Electromagnetic Field) technique was newly developed that is based on the induction principle exciting electromagnetic field. The technique consists of an induction wire and a sensor for detecting electromagnetic field, and is applied in a non-contact mode. In this study, the technique was applied to the evaluation of EDM slits in some conductive materials - aluminum alloy, stainless steel and Inconel alloy. The voltage in the non-defect region is depended upon the measurement lift-off. The voltage signals on defects are measured with peak values, and the peak values changed with the depth of defects. The voltage distributions for all conductive materials are the same trend.

Interpretation of Bronchodilator Response in Patients with Obstructive Airway Disease (폐쇄성 기도 질환자에서 기관지 확장제 반응에 대한 평가)

  • Choi, Hee-Jin;Kim, Ki-Bum;Cho, Young-Bock;Cho, Ihn-Ho;Chung, Jin-Hong;Lee, Kwan-Ho;Lee, Hyun-Woo
    • Tuberculosis and Respiratory Diseases
    • /
    • v.42 no.3
    • /
    • pp.332-341
    • /
    • 1995
  • Background: Measurement of bronchodilator response is necessary to establish reversibility of airflow obstruction that was helpful to estimate the diagnosis, treatment, and prognosis in obstructive airway disease. An useful index should be able to detect the bronchodilator response more sensitively not related with degree of airflow obstruction and also be independent of initial $FEV_1$. Method: Sensitivities of bronchodilator response in each group classified by degree of airflow obstruction in $FEV_1$, FVC, $FEF_{25\sim75%}$, Isovolume $FEF_{25\sim75%}$, sGaw were studied and correlation coefficients were calculated between initial $FEV_1$ and reversibilities expressed as absolute, %initial, % predicted, %possible in $FEV_1$. Result: Sensitivities of bronchodilator response were 61.5% in FVC, Isovolume $FEF_{25\sim75%}$ and sGaw, in severe group, and 56.3% in Isovolume $FEF_{25\sim75%}$ and sGaw, in moderate group, and 62.5% in $FEV_1$ and sGaw and 50.0% in FVC and Isovolume $FEF_{25\sim75%}$, in mild group, and 60.0% in sGaw and 58.0% in Isovolume $FEF_{25\sim75%}$ in total patients. Correlation coefficients between initial $FEV_1$(L) and absolute, % initial, % predicted, % possible were 0.15, -0.22(p<0.05), 0.02, 0.24(p<0.05) and correlation coefficients between initial $FEV_1$(% predicted) and absolute, % initial, % predicted, %possible were 0.06, -0.28(p<0.05), 0.08, 0.39(p<0.05). Conclusion: Volume related parameters were more sensitive index not related with degree of airway obstruction and the change in $FEV_1$ expressed as % predicted was the least dependent on initial $FEV_1$ and reversibilities, expressed as % initial or as % possible(predicted minus initial $FEV_1$)were correlated with initial $FEV_1$.

  • PDF

Fractional exhaled nitric oxide and forced expiratory flow between 25% and 75% of vital capacity in children with controlled asthma

  • Yoon, Ji-Yong;Woo, Sung-Il;Kim, Heon;Sun, Yong-Han;Hahn, Youn-Soo
    • Clinical and Experimental Pediatrics
    • /
    • v.55 no.9
    • /
    • pp.330-336
    • /
    • 2012
  • Purpose: Fractional exhaled nitric oxide (FeNO) and forced expiratory flow between 25% and 75% of vital capacity ($FEF_{25-75}$) are not included in routine monitoring of asthma control. We observed changes in FeNO level and $FEF_{25-75}$ after FeNO-based treatment with inhaled corticosteroid (ICS) in children with controlled asthma (CA). Methods: We recruited 148 children with asthma (age, 8 to 16 years) who had maintained asthma control and normal forced expiratory volume in the first second ($FEV_1$) without control medication for ${\geq}3$ months. Patients with FeNO levels >25 ppb were allocated to the ICS-treated (FeNO-based management) or untreated group (guideline-based management). Changes in spirometric values and FeNO levels from baseline were evaluated after 6 weeks. Results: Ninety-three patients had FeNO levels >25 ppb. These patients had lower $FEF_{25-75}$ % predicted values than those with FeNO levels ${\leq}25$ ppb (P<0.01). After 6 weeks, the geometric mean (GM) FeNO level in the ICS-treated group was 45% lower than the baseline value, and the mean percent increase in $FEF_{25-75}$ was 18.7% which was greater than that in other spirometric values. There was a negative correlation between percent changes in $FEF_{25-75}$ and FeNO (r=-0.368, P=0.001). In contrast, the GM FeNO and spirometric values were not significantly different from the baseline values in the untreated group. Conclusion: The anti-inflammatory treatment simultaneously improved the FeNO levels and $FEF_{25-75}$ in CA patients when their FeNO levels were >25 ppb.

Correlations between Body Indices and Flow-Volume Curve Parameters (신체지표와 유량-기량곡선 지표간의 상관성)

  • Jin, Bok-Hee
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.3
    • /
    • pp.135-139
    • /
    • 2009
  • Pulmonary function test has been know to be greatly affected by body indices, such as sex, age, height, body weight, body surface area (BSA) and body mass index (BMI), so hat this study was focused to see the relationship between body index and flow-volume curves. Subjects were 156 (male 90, female 66) and they were examined for pulmonary function test in terms of body index and correlation/multiple regression analysis of flow-volume curves at Presbyterian Medical Center from March to August, 2009. The followings results after analyzing the correlation between body index and flow-volume curves. Although flow-volume curve FEF25-75% showed close correlation with age, body weight, and body surface area, but not with body mass index. In addition, multiple regression analysis was performed to see how each body index affects flow-volume curve FEF25-75%, and FEF25-75% dispersion was explained as 74.5% with age only, 94.2% with age and height, and 96% with age, height, and sex. Therefore, sex, age and height that are mainly used for predictive formular of pulmonary function test and nomogram were important factors for pulmonary function test itself, and further study must be done for other body index.

  • PDF

Effect of Intensive Training on Ventilatory Functions in Soccer Players (축구 선수에서 집중훈련이 환기기능에 미치는 영향)

  • Baek, Hyo-Jong;Kim, Kyung-Ho;Lee, Byung-Ki;Lee, Choong-Ki;Choi, Dong-Wook;Park, Hi-Myung;Kim, Yu-Moon;Kim, Jong-Suk
    • Tuberculosis and Respiratory Diseases
    • /
    • v.38 no.4
    • /
    • pp.379-383
    • /
    • 1991
  • To evaluate the effect of intensive training on ventilatory functions in soccer players, comparisons of various ventilatory parameters were made before and after 5-5.5 months of intensive training. The subjects were 15 members of a university soccer team with mean age and career of 19.9 and 8.3 years, respectively. Ventilatory parameters studied were those obtained by the analyses of forced expiratory volume and maximal expiratory flow-volume curves, as well as spirometric measurements of VC and MVV. After intensive training, volume parameters, such as VC, FVC and $FEV_{1&3}$ as well as flow parameters, effort-dependent and effort-independent, such as MVV, FEF200-1200, FEF25-75%, PEF, FEF25%, FEF50%, FEF75% showed significant increase. However, when the observed values of flow parameters were volume-adjusted to FVC, the differences before and after intensive training became insignificant. This suggests that enhanced ventilatory functions in soccer players after intensive training are primarily due to increase in FVC caused by increase in respiratory musle strength.

  • PDF