• Title/Summary/Keyword: FEDs

Search Result 44, Processing Time 0.026 seconds

Growth of Carbon Nanotubes at Low temperature by HF-PECVD (Hot-filament 화학기상증착법을 이용한 탄소나노튜브의 저온 성장)

  • Chang, Yoon-Jung;Choi, Eun-Chang;Park, Yong-Seob;Choi, Won-Seok;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.151-152
    • /
    • 2007
  • 탄소나노튜브(CNTs)는 우수한 물리적, 화학적, 기계적 특성으로 다양한 분야에서 연구가 진행 되고있다. 특히, field emission displays (FEDs)로의 응용을 위해서는 기본적으로 sodalime glass 위에 직접 CNTs를 성장시켜야 하며, 소자 응용을 위해 기판인 sodalime glass를 왜곡시키는 온도보다 낮은 온도에서 CNT의 수직 성장이 이루어져야 한다. 본 연구에서는 Hot-filament plasma enhanced chemical vapor deposition (HF-PECVD)를 이용하여 합성온도를 400, 450, 500, $550^{\circ}C$로 변화시켰으며 촉매 층인 Ni의 두께를 5~40 nm까지 조절하여 탄소나노튜브를 합성하였다. 저온에서 합성된 탄소나노튜브는 FE-SEM을 이용하여 성장 형태 및 표면 특성을 확인하였으며, 미세구조는 HR-TEM을 이용하여 확인하였다.

  • PDF

Field Emission Characteristics and Growth Analysis of Carbon Nanotubes by plasma-enhanced chemical vapor deposition (플라즈마 화학 기상 증착법을 이용한 탄소나노튜브의 성장 분석 및 전계방출 특성)

  • Oh, Jung-Keun;Ju, Byeong-Kwon;Kim, Nam-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.71-75
    • /
    • 2003
  • Carbon nanotubes(CNTs) are grown by using Co catalyst metal. CNTs fabricated by PECVD(plasma enhanced chemical vapor deposition) method are studied in terms of surface reaction and surface structure by TEM and Raman analysing method and are analysed in its electrical field emission characteristics with variation of space between anode and cathode. Acetylene($C_2H_2$) gas is used as the carbon source, while ammonia and hydrogen gas are used as catalyst and dilution gas. The CNTs grown by hydrogen($H_2$) gas plasma indicates better vertical alignment, lower temperature process and longer tip, compared to that grown by ammonia($NH_3$) gas plasma. The CNTs fabricated with Co(cobalt) catalyst metal and PECVD method show the multiwall structure in mid-circle type in tip-end and the inner vacancy of 10nm. Emission properties of CNTs indicate the turn-on field to be $2.6\;V/{\mu}m$. We suggest that CNTs can be possibly applied to the emitter tip of FEDs and high brightness flat lamp because of low temperature CNTs growth, low turn-on field.

  • PDF

Development of Dual FDG Auto Synthesis Module (듀얼 FDG 자동합성장치 개발)

  • Jeong, Cheol-Ki;Lee, Goung-Jin;Hur, Min-Goo;Jang, Hong-Suk;Min, Young-Don
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.313-316
    • /
    • 2011
  • [$^{18}F$]FDG (2-[$^{18}F$] Fluoro-2-deoxy-D-Glucose), which is required Automated Synthetic Module for production, is most often used Radiopharmaceuticals in nuclear medicine. In this study, an Automated Synthesis Module was developed to produce FDG in two consecutive time when F-18 feds continuously by modifying a domestic FDG Automated Synthetic Module on structural geometry and control system. The results were showed that the Average Synthesis Yields on the developed Automated Synthetic Module were $45{\pm}3%$ (n=20), $50{\pm}3%$ (n=20) respectively. The Quality Control results, such as Radio TLC, Radiochemical purity, Gamma-counter, pH, LAL Test, Micro bacteria test, showed in same level with domestic [$^{18}F$]FDG Auto-Synthetic modules. Therefore, if some features were improved by considering the components life time and appearance, commercial sales can be expected because of low price and easy maintenance compared with foreign products.

Triode-Type Field Emission Displays with Carbon Nanotube Emitters

  • You, J.H.;Lee, C.G.;Jung, J.E.;Jin, Y.W.;Jo, S.H.;Nam, J.W.;Kim, J.W.;Lee, J.S.;Jang, J.E.;Park, N.S.;Cha, J.C.;Chi, E.J.;Lee, S.J.;Cha, S.N.;Park, Y.J.;Ko, T.Y.;Choi, J.H.;Lee, S.J.;Hwang, S.Y.;Chung, D.S.;Park, S.H.;Kim, J.M.
    • Journal of Information Display
    • /
    • v.2 no.3
    • /
    • pp.48-53
    • /
    • 2001
  • Carbon nanotube emitters, prepared by screen printing, have demonstrated a great potential towards low-cost, largearea field emission displays. Carbon nanotube paste, essential to the screen printing technology, was formulated to exhibit low threshold electric fields as well as an emission uniformity over a large area. Two different types of triode structures, normal gate and undergate, have been investigated, leading us to the optimal structure designing. These carbon nanotube FEDs demonstrated color separation and high brightness over 300 $cd/m^2$ at a video-speed operation of moving images. Our recent developments are discussed in details.

  • PDF

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

Utilization of Dietary Herb Obosan III Growth of Juvenile Olive Flounder, Paralichthys olivaceus (한방사료 첨가제인 어보산의 효과 III. 시판 사료에 어보산 첨가시 넙치치어의 성장에 미치는 효과)

  • 김종현;문영봉;정창화;김동수
    • Journal of Aquaculture
    • /
    • v.13 no.3
    • /
    • pp.231-238
    • /
    • 2000
  • Growth, feed efficiency and condition factor of the olive flounder fed supplemented diets containing different levels of Obosan were significantly (P<0.05), especialluy at the optimum level of 0.6% Obosan. The hematological values (RBC count, hemoglobin, hematocrit, MCHC, MCV and MCH) were not significantly different among the flounder fed diets containing different levels of Obosan (P> 0.05). However, serum concentrations of total protein and glucose in the flounder, feds Obosan supplemented diets, were significantly higher, while the levels of total cholesterol, COT and GPT were lower than those of control fish (P<0.05)i the values for COT and GPT were only about half that of the control (P<0.05).

  • PDF

Field Emission Characteristics of ZnO Nanowires Grown by Hydrothermal Method (수열합성법에 의해 성장된 ZnO 나노와이어의 전계방출 특성)

  • No, Im-Jun;Kim, Sung-Hyun;Shin, Paik-Kyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.2
    • /
    • pp.101-105
    • /
    • 2010
  • We fabricated FEDs(Filed emission devices) based on ZnO nanowires. The ZnO nanowires were synthesized on Au thin films by hydrothermal method at the temperature of 90[$^{\circ}C$] on hot plate. In order to form tips of the ZnO nanowire, SDS(Sodium Dodecyl Sulfate) was mixed in O.05-0.3[wt%] solution as capping material. After 2 hour growth, we obtained nanowires of chain form The high-purity nanowires showed sharp tip geometry with a wurtzite structure. The field emission properties of the ZnO nanowires were investigated in high vacuum chamber. The turn-on field for the ZnO nanowires was found to be about 4.1[V/${\mu}m$] at a current density of 0.1[${\mu}A/cm^2$].

The Sugge Voltage restraint of induction motor using low-loss snubber circuit (저손실 스너버 회로를 이용한 유도전동기의 서지전압 억제)

  • Cho, Man-Chul;Mun, Sang-Pil;Kim, Chil-Yong;Kim, Ju-Yong;Shu, Ki-Young;Kwon, Soon-Kurl
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2007.05a
    • /
    • pp.473-477
    • /
    • 2007
  • The development of advanced Insulated Gate Bipolar Transistor(IGBT)has enabled high-frequency switching operation and has improved the performance of PWM inverters for motor drive. However, the high rate of dv/dt of IGBT has adverse effects on motor insulation stress. In many motor drive applications, the inverter and motor are separated and it requires long motor feds. The long cable contributes high frequency ringing at the motor terminal and it results in hight surge voltage which stresses the motor insulation. The inverter output filter and RDC snubber are conventional method which can reduce the surge voltage. In this paper, we propose the new low loss snubber to reduce the motor terminal surge voltage. The snubber consists of the series connection of charging/discharging capacitor and the voltage-clamped capacitor. At IGBT turn-off, the snubber starts to operate when the IGBT voltage reaches the voltage-clamped level. Since dv/dt is decreased by snubber operating, the peak level of the surge voltage can be reduced. Also the snubber operates at the IGBT voltage above the voltage-clamped level, the snubber loss is largely reduced comparing with RDC snubber. The proposed snubber enables to reduce the motor terminal surge voltage with low loss.

  • PDF

The study of silicon etching using the high density hollow cathode plasma system

  • Yoo, Jin-Soo;Lee, Jun-Hoi;Gangopadhyay, U.;Kim, Kyung-Hae;Yi, Jun-Sin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1038-1041
    • /
    • 2003
  • In the paper, we investigated silicon surface microstructures formed by reactive ion etching in hollow cathode system. Wet anisotropic chemical etching technique use to form random pyramidal structure on <100> silicon wafers usually is not effective in texturing of low-cost multicrystalline silicon wafers because of random orientation nature, but High density hollow cathode plasma system illustrates high deposition rate, better film crystal structure, improved etching characteristics. The etched silicon surface is covered by columnar microstructures with diameters form 50 to 100nm and depth of about 500nm. We used $SF_{6}$ and $O_{2}$ gases in HCP dry etch process. This paper demonstrates very high plasma density of $2{\times}10^{12}$ $cm^{-3}$ at a discharge current of 20 mA. Silicon etch rate of 1.3 ${\mu}s/min$. was achieved with $SF_{6}/O_{2}$ plasma conditions of total gas pressure=50 mTorr, gas flow rate=40 sccm, and rf power=200 W. Our experimental results can be used in various display systems such as thin film growth and etching for TFT-LCDs, emitter tip formations for FEDs, and bright plasma discharge for PDP applications. In this paper we directed our study to the silicon etching properties such as high etching rate, large area uniformity, low power with the high density plasma.

  • PDF

Field Emission Characteristics of Carbon Nanotube-Copper Composite Structures Formed by Composite Plating Method (복합도금법으로 형성된 탄소나노튜브-구리 복합구조물의 전계방출특성)

  • Sung Woo-Yong;Kim Wal-Jun;Lee Seung-Min;Yoo Hyeong-Suk;Lee Ho-Young;Joo Seung-Ki;Kim Yong-Hyup
    • Journal of the Korean institute of surface engineering
    • /
    • v.38 no.4
    • /
    • pp.163-166
    • /
    • 2005
  • Carbon nanotube-copper composite structures were fabricated using composite plating method and their field emission characteristics were investigated. Multi-walled carbon nanotubes (MWNTs) synthesized by chemical vapor deposition were used in the present study. It was revealed that turn-on field was about $3.0\;V/{\mu}m$ with the current density of $0.1\;{\mu}A/cm^2.$ We observed relatively uniform emission characteristics as well as stable emission current Carbon nanotube-copper composite plating method is efficient and it has no intrinsic limit on the deposition area. Moreover, it gives strong adhesion between emitters and an electrode. Therefore, we recommend that carbon nanotube-copper composite plating method can be applied to fabricate electron field emitters for large area FEDs and large area vacuum lighting sources.