• Title/Summary/Keyword: FEATURE

Search Result 16,504, Processing Time 0.053 seconds

A METHOD FOR ADJUSTING ADAPTIVELY THE WEIGHT OF FEATURE IN MULTI-DIMENSIONAL FEATURE VECTOR MATCHING

  • Ye, Chul-Soo
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.772-775
    • /
    • 2006
  • Muilti-dimensional feature vector matching algorithm uses multiple features such as intensity, gradient, variance, first or second derivative of a pixel to find correspondence pixels in stereo images. In this paper, we proposed a new method for adjusting automatically the weight of feature in multi-dimensional feature vector matching considering sharpeness of a pixel in feature vector distance curve. The sharpeness consists of minimum and maximum vector distances of a small window mask. In the experiment we used IKONOS satellite stereo imagery and obtained accurate matching results comparable to the manual weight-adjusting method.

  • PDF

Optimal Feature Extraction for Multiclass Problems through Proper Choice of Initial Feature Vectors (초기 피춰벡터 설정을 통한 다중클래스 문제에 대한 최적 피춰 추출 기법)

  • 최의선;이철희
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.647-650
    • /
    • 1999
  • In this Paper, we propose an optimal feature extraction for multiclass problems through proper choice of initial feature vectors. Although numerous feature extraction algorithms have been proposed, those algorithms are not optimal for multiclass problems. Recently, an optimal feature extraction algorithm for multiclass problems has been proposed, which provides a better performance than the conventional feature extraction algorithms. In this paper, we improve the algorithm by choosing good initial feature vectors. As a result, the searching time is significantly reduced. The chance to be stuck in a local minimum is also reduced.

  • PDF

Feature Configuration Validation using Semantic Web Technology (시맨틱 웹 기술을 이용한 특성 구성 검증)

  • Choi, Seung-Hoon
    • Journal of Internet Computing and Services
    • /
    • v.11 no.4
    • /
    • pp.107-117
    • /
    • 2010
  • The feature models representing the common and variable concepts among the software products and the feature configurations generated by selecting the features to be included in the target product are the essential components in the software product lines methodology. Although the researches on the formal semantics and reasoning of the feature models and feature configurations are in progress, the researches on feature model ontologies and feature configuration validation using the semantic web technologies are yet insufficient. This paper defines the formal semantics of the feature models and proposes a feature configuration validation technique based on ontology and semantic web technologies. OWL(Web Ontology Language), a semantic web standard language, is used to represent the knowledge in the feature models and the feature configurations. SWRL(Semantic Web Rule Language), a semantic web rule languages, is used to define the rules to validate the feature configurations. The approach in this paper provides the formal semantic of the feature models, automates the validation of feature configurations, and enables the application of various semantic web technologies, such as SQWRL.

Aspectual Implementation Patterns for Feature-Oriented Product Line Engineering (특성 지향의 제품계열공학을 위한 애스팩트 구현 패턴)

  • Lee, Kwan-Woo
    • The KIPS Transactions:PartD
    • /
    • v.16D no.1
    • /
    • pp.93-104
    • /
    • 2009
  • Modular implementation of a feature is a first step toward feature-oriented product line engineering, which develops and then utilizes core assets to configure products in terms of features. Aspect-oriented programming provides effective mechanisms for improving the modularity of feature implementations. However, as features in general are not independent of each other, changes in the implementation of one feature may cause changes to or side effects in the implementation of other features. Moreover, since the time at which a feature is incorporated into products, called feature binding time, may be various from compile time through load time to run time, a feature may have to be implemented differently depending on when the feature is bound into a product. To make each feature implementation module as independent as possible, this paper proposes aspectual implementation patterns that can effectively separate feature dependencies as well as feature binding time from feature implementation modules. These patterns enable flexible composition of feature implementation modules without affecting other modules according to feature selection. The approaches are demonstrated and evaluated based on a product line of scientific calculator applications.

Recent Advances in Feature Detectors and Descriptors: A Survey

  • Lee, Haeseong;Jeon, Semi;Yoon, Inhye;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.3
    • /
    • pp.153-163
    • /
    • 2016
  • Local feature extraction methods for images and videos are widely applied in the fields of image understanding and computer vision. However, robust features are detected differently when using the latest feature detectors and descriptors because of diverse image environments. This paper analyzes various feature extraction methods by summarizing algorithms, specifying properties, and comparing performance. We analyze eight feature extraction methods. The performance of feature extraction in various image environments is compared and evaluated. As a result, the feature detectors and descriptors can be used adaptively for image sequences captured under various image environments. Also, the evaluation of feature detectors and descriptors can be applied to driving assistance systems, closed circuit televisions (CCTVs), robot vision, etc.

Comparing Korean Spam Document Classification Using Document Classification Algorithms (문서 분류 알고리즘을 이용한 한국어 스팸 문서 분류 성능 비교)

  • Song, Chull-Hwan;Yoo, Seong-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10c
    • /
    • pp.222-225
    • /
    • 2006
  • 한국은 다른 나라에 비해 많은 인터넷 사용자를 가지고 있다. 이에 비례해서 한국의 인터넷 유저들은 Spam Mail에 대해 많은 불편함을 호소하고 있다. 이러한 문제를 해결하기 위해 본 논문은 다양한 Feature Weighting, Feature Selection 그리고 문서 분류 알고리즘들을 이용한 한국어 스팸 문서 Filtering연구에 대해 기술한다. 그리고 한국어 문서(Spam/Non-Spam 문서)로부터 영사를 추출하고 이를 각 분류 알고리즘의 Input Feature로써 이용한다. 그리고 우리는 Feature weighting 에 대해 기존의 전통적인 방법이 아니라 각 Feature에 대해 Variance 값을 구하고 Global Feature를 선택하기 위해 Max Value Selection 방법에 적용 후에 전통적인 Feature Selection 방법인 MI, IG, CHI 들을 적용하여 Feature들을 추출한다. 이렇게 추출된 Feature들을 Naive Bayes, Support Vector Machine과 같은 분류 알고리즘에 적용한다. Vector Space Model의 경우에는 전통적인 방법 그대로 사용한다. 그 결과 우리는 Support Vector Machine Classifier, TF-IDF Variance Weighting(Combined Max Value Selection), CHI Feature Selection 방법을 사용할 경우 Recall(99.4%), Precision(97.4%), F-Measure(98.39%)의 성능을 보였다.

  • PDF

Lateral Assimilation in a Feature Geometry (자질 기하학과 측음화)

  • Lee Hae-Bong
    • MALSORI
    • /
    • no.33_34
    • /
    • pp.71-89
    • /
    • 1997
  • In the framework of linear representation which allows for no internal structure within features, there is no way to represent nonlinear phonological phenomena such as complex segments. This paper shows how we carl solve some problems of the linear feature theory in relation to the hierarchical feature theory. The purpose of this paper is to explain lateral assimilation under hierarchical feature representation. Although arguments for the position of classes of distinctive features have been made the position of (lateral) remains the issue of debate. Sagey(1988) argues that the feature [lateral] is structurally dependent on the root node. In contrast Rice & Avery (1991) put the feature (lated) under the spontaneous voicing. I have discussed previous studies of feature hierarchy and I propose a revised model of feature representation. Within this model I have shown how well feature geometry describes lateralization as feature spreading.

  • PDF

A METHOD OF IMAGE DATA RETRIEVAL BASED ON SELF-ORGANIZING MAPS

  • Lee, Mal-Rey;Oh, Jong-Chul
    • Journal of applied mathematics & informatics
    • /
    • v.9 no.2
    • /
    • pp.793-806
    • /
    • 2002
  • Feature-based similarity retrieval become an important research issue in image database systems. The features of image data are useful to discrimination of images. In this paper, we propose the highspeed k-Nearest Neighbor search algorithm based on Self-Organizing Maps. Self-Organizing Maps (SOM) provides a mapping from high dimensional feature vectors onto a two-dimensional space. The mapping preserves the topology of the feature vectors. The map is called topological feature map. A topological feature map preserves the mutual relations (similarity) in feature spaces of input data. and clusters mutually similar feature vectors in a neighboring nodes. Each node of the topological feature map holds a node vector and similar images that is closest to each node vector. In topological feature map, there are empty nodes in which no image is classified. We experiment on the performance of our algorithm using color feature vectors extracted from images. Promising results have been obtained in experiments.

Optimal k-Nearest Neighborhood Classifier Using Genetic Algorithm (유전알고리즘을 이용한 최적 k-최근접이웃 분류기)

  • Park, Chong-Sun;Huh, Kyun
    • Communications for Statistical Applications and Methods
    • /
    • v.17 no.1
    • /
    • pp.17-27
    • /
    • 2010
  • Feature selection and feature weighting are useful techniques for improving the classification accuracy of k-Nearest Neighbor (k-NN) classifier. The main propose of feature selection and feature weighting is to reduce the number of features, by eliminating irrelevant and redundant features, while simultaneously maintaining or enhancing classification accuracy. In this paper, a novel hybrid approach is proposed for simultaneous feature selection, feature weighting and choice of k in k-NN classifier based on Genetic Algorithm. The results have indicated that the proposed algorithm is quite comparable with and superior to existing classifiers with or without feature selection and feature weighting capability.

Manufacturing Feature Extraction for Sculptured Pocket Machining (Sculptured 포켓 가공을 위한 가공특징형상 추출)

  • 주재구;조현보
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.455-459
    • /
    • 1997
  • A methodology which supports the feature used from design to manufacturing for sculptured pocket is newly devlored and present. The information contents in a feature can be easily conveyed from one application to another in the manufacturing domain. However, the feature generated in one application may not be directly suitable for another whitout being modified with more information. Theobjective of the paper is to parsent the methodology of decomposing a bulky feature of sculptured pocket to be removed into compact features to be efficiently machined. In particular, the paper focuses on the two task: 1) to segment horizontally a bulky feature into intermediate features by determining the adequate depth of cut and cutter size and to generate the temporal precedence graph of the intermediate features and 2)to further decompose each intermediate feature vertical into smaller manufacturing features and to apply the variable feed rate to each small feature. The proposed method will provid better efficiency in machining time and cost than the classical method which uses a long string of NC codes necessary to remove a bulky fecture.

  • PDF