• Title/Summary/Keyword: FEATURE

Search Result 16,504, Processing Time 0.04 seconds

Reinforcement Learning Method Based Interactive Feature Selection(IFS) Method for Emotion Recognition (감성 인식을 위한 강화학습 기반 상호작용에 의한 특징선택 방법 개발)

  • Park Chang-Hyun;Sim Kwee-Bo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.7
    • /
    • pp.666-670
    • /
    • 2006
  • This paper presents the novel feature selection method for Emotion Recognition, which may include a lot of original features. Specially, the emotion recognition in this paper treated speech signal with emotion. The feature selection has some benefits on the pattern recognition performance and 'the curse of dimension'. Thus, We implemented a simulator called 'IFS' and those result was applied to a emotion recognition system(ERS), which was also implemented for this research. Our novel feature selection method was basically affected by Reinforcement Learning and since it needs responses from human user, it is called 'Interactive feature Selection'. From performing the IFS, we could get 3 best features and applied to ERS. Comparing those results with randomly selected feature set, The 3 best features were better than the randomly selected feature set.

Exploiting Chaotic Feature Vector for Dynamic Textures Recognition

  • Wang, Yong;Hu, Shiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.4137-4152
    • /
    • 2014
  • This paper investigates the description ability of chaotic feature vector to dynamic textures. First a chaotic feature and other features are calculated from each pixel intensity series. Then these features are combined to a chaotic feature vector. Therefore a video is modeled as a feature vector matrix. Next by the aid of bag of words framework, we explore the representation ability of the proposed chaotic feature vector. Finally we investigate recognition rate between different combinations of chaotic features. Experimental results show the merit of chaotic feature vector for pixel intensity series representation.

Automatic Registration between EO and IR Images of KOMPSAT-3A Using Block-based Image Matching

  • Kang, Hyungseok
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.545-555
    • /
    • 2020
  • This paper focuses on automatic image registration between EO (Electro-Optical) and IR (InfraRed) satellite images with different spectral properties using block-based approach and simple preprocessing technique to enhance the performance of feature matching. If unpreprocessed EO and IR images from Kompsat-3A satellite were applied to local feature matching algorithms(Scale Invariant Feature Transform, Speed-Up Robust Feature, etc.), image registration algorithm generally failed because of few detected feature points or mismatched pairs despite of many detected feature points. In this paper, we proposed a new image registration method which improved the performance of feature matching with block-based registration process on 9-divided image and pre-processing technique based on adaptive histogram equalization. The proposed method showed better performance than without our proposed technique on visual inspection and I-RMSE. This study can be used for automatic image registration between various images acquired from different sensors.

Editing Design Features Constrained by Feature Depedencies (구속조건을 가진 디자인 피쳐의 수정)

  • Woo, Yoon-Hwan
    • Korean Journal of Computational Design and Engineering
    • /
    • v.12 no.5
    • /
    • pp.395-404
    • /
    • 2007
  • Feature-based modeling and history-based modeling are the two main paradigms that are used in most of current CAD systems. Although these modeling paradigms make it easier for designers to create solid model, it may pose dependency constraints on features that are interacting one with another. When editing such features, these constraints often cause unpredictable and unacceptable results. For example, when a parent feature is deleted, the child features of the parent feature are also deleted. This entails re-generations of the deleted features, which requires additional modeling time. In order to complement this situation, we propose a method to delete only the features of interest by disconnecting the dependency constraints. This method can provide designers with more efficient way of model modification.

Feature Model Specification in Product Line (Product-Line에서의 Feature Model의 명세화 방안)

  • 송재승;김민성;박수용
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.373-375
    • /
    • 2002
  • 빠르게 변화하는 시장의 요구에 대응하고자 특정 도메인에 속하는 애플리케이션 간의 재사용을 높이려는 Product-Line에 대한 연구가 진행되고 있다. Product-Line에서는 도메인 내의 여러 애플리케이션 간의 차이점과 공통정을 분류하는데 Feature Modeling이라는 개념을 주로 사용하고 있다. 이러한 Feature를 추상화하여 메타 모델로 나타내고 정령과 기법을 통하여 명세화 한다면, 기존의 Feature 모델에서 발견해내지 못하는 feature들과 관련 요소들을 추출하고, 명세화를 통한 통일된 해석이 가능하며 , Feature Model에 대한 reasoning, 충돌에 대한 예측 및 면상 등의 지원이 가능할 것이다. 따라서 본 논문에서는 Multi-paradigm 명세 언어를 제공하여주는 KAOS 방법을 적용하여, 추상화 수준에서의 메타 모델을 제안하고, Feature를 명세와 하고 습득하는 방안을 제시하고자 만다.

  • PDF

Feature-Based Relation Classification Using Quantified Relatedness Information

  • Huang, Jin-Xia;Choi, Key-Sun;Kim, Chang-Hyun;Kim, Young-Kil
    • ETRI Journal
    • /
    • v.32 no.3
    • /
    • pp.482-485
    • /
    • 2010
  • Feature selection is very important for feature-based relation classification tasks. While most of the existing works on feature selection rely on linguistic information acquired using parsers, this letter proposes new features, including probabilistic and semantic relatedness features, to manifest the relatedness between patterns and certain relation types in an explicit way. The impact of each feature set is evaluated using both a chi-square estimator and a performance evaluation. The experiments show that the impact of relatedness features is superior to existing well-known linguistic features, and the contribution of relatedness features cannot be substituted using other normally used linguistic feature sets.

A Novel Approach for Object Detection in Illuminated and Occluded Video Sequences Using Visual Information with Object Feature Estimation

  • Sharma, Kajal
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.2
    • /
    • pp.110-114
    • /
    • 2015
  • This paper reports a novel object-detection technique in video sequences. The proposed algorithm consists of detection of objects in illuminated and occluded videos by using object features and a neural network technique. It consists of two functional modules: region-based object feature extraction and continuous detection of objects in video sequences with region features. This scheme is proposed as an enhancement of the Lowe's scale-invariant feature transform (SIFT) object detection method. This technique solved the high computation time problem of feature generation in the SIFT method. The improvement is achieved by region-based feature classification in the objects to be detected; optimal neural network-based feature reduction is presented in order to reduce the object region feature dataset with winner pixel estimation between the video frames of the video sequence. Simulation results show that the proposed scheme achieves better overall performance than other object detection techniques, and region-based feature detection is faster in comparison to other recent techniques.

Offline Handwritten Numeral Recognition Using Multiple Features and SVM classifier

  • Kim, Gab-Soon;Park, Joong-Jo
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.526-534
    • /
    • 2015
  • In this paper, we studied the use of the foreground and background features and SVM classifier to improve the accuracy of offline handwritten numeral recognition. The foreground features are two directional features: directional gradient feature by Kirsch operators and directional stroke feature by local shrinking and expanding operations, and the background feature is concavity feature which is extracted from the convex hull of the numeral, where the concavity feature functions as complement to the directional features. During classification of the numeral, these three features are combined to obtain good discrimination power. The efficiency of our scheme is tested by recognition experiments on the handwritten numeral database CENPARMI, where SVM classifier with RBF kernel is used. The experimental results show the usefulness of our scheme and recognition rate of 99.10% is achieved.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

Matching Of Feature Points using Dynamic Programming (동적 프로그래밍을 이용한 특징점 정합)

  • Kim, Dong-Keun
    • The KIPS Transactions:PartB
    • /
    • v.10B no.1
    • /
    • pp.73-80
    • /
    • 2003
  • In this paper we propose an algorithm which matches the corresponding feature points between the reference image and the search image. We use Harris's corner detector to find the feature points in both image. For each feature point in the reference image, we can extract the candidate matching points as feature points in the starch image which the normalized correlation coefficient goes greater than a threshold. Finally we determine a corresponding feature points among candidate points by using dynamic programming. In experiments we show results that match feature points in synthetic image and real image.