• Title/Summary/Keyword: FEA model

Search Result 551, Processing Time 0.03 seconds

A study on the finite element modeling of femur based marching cube algorithm (Marching cube 알고리즘을 이용한 대퇴골의 유한요소 모델링에 관한 연구)

  • 곽명근;오택열;변창환;이은택;유용석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.1074-1077
    • /
    • 2002
  • Biomechanical behavior of the human femur is very important in various clinical situations. In this study, the data of FE models based on DICOM file exported from Computed tomography(CT). We generated FE models(voxel model, tetra model) of human femur using CT slide image. We compared them with Yon Mises stress results derived from finite element analysis(FEA). Comparing the two models, we found a correlation of them. As a result, the tetra model based proposed marching cube algorithm is a valid and accurate method to predict parameters of the complex biomechanical behavior of human femur.

  • PDF

Iron Loss Analysis of a Permanent Magnet Rotating Machine Taking Account of the Vector Hysteretic Properties of Electrical Steel Sheet

  • Yoon, Heesung;Jang, Seok-Myeong;Koh, Chang Seop
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.2
    • /
    • pp.165-170
    • /
    • 2013
  • This paper presents the iron loss prediction of rotating electric machines taking account of the vector hysteretic properties of electrical steel sheet. The E&S vector hysteresis model is adopted to describe the vector hysteretic properties of a non-oriented electrical steel sheet, and incorporated into finite element analysis (FEA) for magnetic field analysis and iron loss prediction. A permanent magnet synchronous generator is taken as a numerical model, and the analyzed magnetic field distribution and predicted iron loss by using the proposed method is compared with those from a conventional method which employs an empirical iron loss formula with FEA based on a non-linear B-H curve. Through the comparison the effectiveness of the presented method for the iron loss prediction of the rotating machine is verified.

The Comparison of the Current Unblance Factor According to the Cable Array Method using PSCAD/EMTDC and FEA (PSCAD/EMTDC와 FEA를 이용한 케이블 배열 방법에 따른 전류 불균형률의 비교)

  • Shin, Ho-Jeon;Kim, Ji-Ho;Kang, Gab-Suk;Kim, Jae-Chul;Lee, Hyang-Beom
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.72-78
    • /
    • 2013
  • In this study, samples from the site where there occurred unbalanced current when cable routing were analyzed, and the simulation program for electric power system analysis, PSCAD/EMTDC, was used to calculate the current unbalance on cable routing. Based on electromagnetic finite element analysis(FEA), electromagnetic parameters enabled the interlocking with COMSOL for the calculation of allowable current ampacity and magnetic filed distribution. This then led to modeling unbalanced current between common modes using the unbalanced current analysis program, thereby comparing and discussing the results from both. The analyzed model is a common mode 2 parallel circuit, which is a basic model for cable routing, and by arranging cables in various ways, the arrangement with the least current unbalance was suggested, which would, in the future, prevent earth faults and extend life for the whole cable.

The Design, Fabrication, and Characteristic Experiment of Electromagnet to Control Element Drive Mechanism in System-Integrated Modular Advanced Reactor (일체형원자로 제어봉구동장치에 장착되는 전자석의 설계 및 특성해석)

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.4
    • /
    • pp.147-153
    • /
    • 2003
  • This paper describes the finite element analysis(FEA) for the design of electromagnet for Control Element Drive Mechanism(CEDM) in System-integrated Modular Advanced Reactor(SMART) and compared with the lifting power characteristics of prototype electromagnet. A thermal analysis was performed for the electromagnet. A model for the thermal analysis of the electromagnet was developed and theoretical bases for the model were established. It is important that the temperature of the electromagnet windings be maintained within the allowable limit of the insulation. since the electromagnet of CEDM is always supplied with current during the reactor operation. So the thermal analysis of the winding insulation which is composed of polyimide and air were performed by finite element method. As a result, it is shown that the characteristics of prototype electromagnet have a good agreement with the results of FEA. The thermal properties obtained here will be used as input for the optimization analysis of the electromagnet.

Capacitive sensor for the detection of residual quantity of intravenous drip solution in a plastic intravenous bag

  • Wei, Qun;Woo, Sang-Hyo;Mohy-Ud-Din, Zia;Kim, Dong-Wook;Won, Chul-Ho;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.271-277
    • /
    • 2010
  • Intravenous(IV) drip therapy is extensively used for all kinds of treatments. It works by delivering medicine directly into the vein. When the medicine has been fully dispensed, a dangerous situation occurs since air in the IV drip bag could enter the patient's vein, which is hazardous to the patient’s safety. In this paper, using capacitive sensors to detect the residual quantity of a plastic IV drip pack is proposed. A simulation model of this technology was shown by a finite elements analysis(FEA) program to find out its feasibility and analyze the proper geometrical dimension of a capacitive sensor. According to the FEA simulation, 3 kinds of capacitive sensors were attached to the bottom surface of the plastic IV drip bag to detect the residual quantity in the experiment. Experimental data showed an agreement with the FEA simulation model estimation and confirmed that the sensor works.

A Study on the Prediction of Elastic Modulus in Short Fiber Composite Materials (단섬유 복합재료의 탄성계수 예측에 관한 연구)

  • Kim Hong Gun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.318-324
    • /
    • 2005
  • Theoretical efforts are performed to extend the formulation of NSLT(New Shear Lag Theory) for the prediction of the elastic modulus in short fiber composite. The formulation is based on the elastic stress transfer considering the stress concentration effects influenced by elastic modulus ratio between fiber and matrix. The composite modulus, thus far, is calculated by changing the fiber aspect ratio and volume fraction. It is found that the comparison with FEA(Finite Element Analysis) results gives a good agreement with the present theory (NSLT). It is also found that the NSLT is more accurate than the SLT(Shear Lag Theory) in short fiber regime when compared by FEA results. However, The modulus predicted by NSLT becomes similar values that of SLT when the fiber aspect ratio increases. Finally, It is shown that the present model has the capability to predict the composite modulus correctly in elastic regime.

Automated FEA Simulation of Micro Motor (마이크로 모터의 자동화된 FEA 시뮬레이션)

  • Lee Joon-Seong
    • Journal of the Korea Society for Simulation
    • /
    • v.11 no.3
    • /
    • pp.13-22
    • /
    • 2002
  • This paper describes an automated evaluation of electrostatic field for micro motors whose sizes range 10 to 103um. Electric field modeling in micro motors has been generally restricted to in-plane two-dimensional finite element analysis (FEA). In this paper, the actual three-dimensional geometry of the micro motor is considered. An automatic FE mesh generation technique, which is based on the fuzzy knowledge processing and computational geometry techniques, is incorporated in the system, together with one of commercial FE analysis codes and one of commercial solid modelers. The system allows a geometry model of concern to be automatically converted to different FE models, depending on physical phenomena to be analyzed, electrostatic analysis and stress analysis and so on. The FE models are then exported to the FE analysis code, and then analyses are peformed. Then, analytical analysis and FE analysis about the torque generated by electrostatic micro motor are performed. The starting torque is proportional to $V^2$, the calculated starting torque from the two-dimensional analytical solutions are three times larger than those from the three-dimensional FE solutions.

  • PDF

Thrust Analysis and Experiments on Low-Speed Single-Sided Linear Induction Motor

  • Jeong, Jae-Hoon;Choi, Jang-Young;Sung, So-Young;Park, Jong-Won;Lim, Jaewon
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.230-235
    • /
    • 2017
  • When the characteristics of a linear induction motor (LIM) are analyzed using finite element analysis (FEA), it is desirable to set the voltage source as an input. If the voltage source is set as an input in FEA, the leakage inductance and primary resistance of the equivalent circuit must be entered by direct calculation, and the magnetizing inductance and secondary reaction effects are directly considered in FEA. Exact calculation is necessary because the primary winding resistance and leakage inductance directly entered will have a significant effect on the LIM output. Therefore, in this study, we accurately calculated the primary leakage inductance and analyzed the resulting LIM characteristics. We calculated the leakage inductance using an analytical equation and FEA, and we confirmed the accuracy by comparing the results with the value experimentally calculated using a manufactured model. We also analyzed the instrument performance and thrust of the LIM as a function of the difference in the leakage inductance. Finally, we present the conclusions on the precise analysis based on the calculation of the leakage inductance.

Evaluation of surface displacement equation due to tunnelling in cohesionless soil

  • Mazek, Sherif A.
    • Geomechanics and Engineering
    • /
    • v.7 no.1
    • /
    • pp.55-73
    • /
    • 2014
  • The theoretical predictions of ground movements induced by tunnelling are usually based on the assumptions that the subsoil has the same soil densities. The theoretical prediction does not consider the impact of different sand soil types on the surface settlement due to tunnelling. The finite elements analysis (FEA) considers stress and strength parameters of the different sand soil densities. The tunnel construction requires the solution of large soil-structure interaction problem. In the present study, the FEA is used to model soil-tunnel system performance based on a case study to discuss surface displacement due to tunnelling. The Greater Cairo metro tunnel (Line 3) is considered in the present study as case study. The surface displacements obtained by surface displacement equation (SDE) proposed by Peck and Schmidt (1969) are presented and discussed. The main objective of this study is to capture the limitations of the parameters used in the SDE based on the FEA at different sand soil densities. The study focuses on the parameters used in the SDE based on different sand soil densities. The surface displacements obtained by the FEA are compared with those obtained by the SDE. The results discussed in this paper show that the different sand soil densities neglected in the SDE have a significant influence on the surface displacement due to tunnelling.

Finite-element analysis and design of aluminum alloy RHSs and SHSs with through-openings in bending

  • Ran Feng;Tao Yang;Zhenming Chen;Krishanu Roy;Boshan Chen;James B.P. Lim
    • Steel and Composite Structures
    • /
    • v.46 no.3
    • /
    • pp.353-366
    • /
    • 2023
  • This paper presents a finite-element analysis (FEA) of aluminum alloy rectangular hollow sections (RHSs) and square hollow sections (SHSs) with circular through-openings under three-point and four-point bending. First, a finite-element model (FEM) was developed and validated against the corresponding test results available in the literature. Next, using the validated FE models, a parametric study comprising 180 FE models was conducted. The cross-section width-to-thickness ratio (b/t) ranged from 2 to 5, the hole size ratio (d/h) ranged from 0.2 to 0.8 and the quantity of holes (n) ranged from 2 to 6, respectively. Third, results obtained from laboratory test and FEA were compared with current design strengths calculated in accordance with the North American Specifications (NAS), the modified direct strength method (DSM) and the modified Continuous strength method (CSM). The comparison shows that the modified CSM are conservative by 15% on average for aluminum alloy RHSs and SHSs with circular through-openings subject to bending. Finally, a new design equation is proposed based on the modified CSM after being validated with results obtained from laboratory test and FEA. The proposed design equation can provide accurate predictions of flexural capacities for aluminum alloy RHSs and SHSs with circular through-openings.