• Title/Summary/Keyword: FE models

Search Result 621, Processing Time 0.024 seconds

Evaluation of Structural Performance of Natural Draught Cooling Tower according to Shell Geometry using Wind Damage Analysis - Part I : One-shell Geometry (풍하중에 의한 손상해석을 이용한 기하형상에 따른 자연 습식 냉각탑의 구조성능 평가 - Part I : One-shell 기하형상)

  • Lee, Sang-Yun;Noh, Sam-Young
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.3
    • /
    • pp.67-78
    • /
    • 2016
  • Determining of the shape in the process of design for natural draught cooling tower is very important, because the shape of hyperbolic shell is respond sensitively to dynamic behavior of the whole cooling tower against wind load. In engineering practice, the geometric parameters have been determining based on the natural frequency. This study analyses influence of the tower shell geometric parameters on the structural behavior. For three representative models were selected, they were analyzed based on evaluation of damage by means of nonlinear FE-method. As a result, a hyperbolic rotational shell with the small radius overall was the lowest damage index induced by sufficient capacity of the stress redistribution and thus a wind-insensitive structure.

Rehabilitation of notched circular hollow sectional steel beam using CFRP patch

  • Setvati, Mahdi Razavi;Mustaffa, Zahiraniza
    • Steel and Composite Structures
    • /
    • v.26 no.2
    • /
    • pp.151-161
    • /
    • 2018
  • The application of carbon fiber reinforced polymer (CFRP) composites for rehabilitation of steel structures has become vital in recent years. This paper presents an experimental program and a finite element (FE) modelling approach to study the effectiveness of CFRP patch for repair of notch damaged circular hollow sectional (CHS) steel beams. The proposed modeling approach is unique because it takes into account the orthotropic behavior and stacking sequence of composite materials. Parametric study was conducted to investigate the effect of initial damage (i.e., notch depth) on flexural performance of the notched beams and effectiveness of the repair system using the validated FE models. Results demonstrated the ability of CFRP patch to repair notched CHS steel beams, restoring them to their original flexural stiffness and strength. The effect of composite patch repair technique on post-elastic stiffness was more pronounced compared to the elastic stiffness. Composite patch repair becomes more effective when the level of initial damage of beam increases.

Three-dimensional Finite Element Analysis of Rubber Pad Deformation (고무패드 변형의 3차원 유한요소해석)

  • Sin, Su-Jeong;Lee, Tae-Su;O, Su-Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.121-131
    • /
    • 1998
  • This paper applies the FE analysis procedure, developed in the Part I of the companion article, to the three-dimensional rubber pad deformation during rubber-pad forming process. Effects of different algorithms corresponding to incompressibility constraint and time integration methods on numerical solution responses are investigated. Laboratory scale experiments support the validity of the developed FE procedure an demonstrate the accuracy of the numerical models. Full scale model responses are also predicted using the reasonable method and parameters obtained in laboratory modeling.

Prediction of the noise radiated by the structural vibration of a powertrain (파워트레인 구조진동으로 인한 방사소음 예측에 관한 연구)

  • Oh, Ki-Seok;Lee, Sang-Kwon;Kim, Sung-Jong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.891-896
    • /
    • 2007
  • Noise radiated from the powertrain is an important factor of the vehicle interior noise. In this paper, Finite Element(FE) model and Boundary Element(BE) models were created. The FE model was updated by doing a correlation between experimental modal analysis(EMA) values and finite element analysis(FEA) values. Main bearing forces were calculated using a running modal data. The forced vibration analysis was simulated using the software MSC/NASTRAN, and the radiated noise was predicted using the software LMS/VIRTUAL.LAB.

  • PDF

A Study on the Exhaust System Model for Thermal Stress Analysis of Exhaust Manifold (배기매니폴드의 열응력 해석을 위한 배기계 모델 구성에 관한 연구)

  • Choi, Bok-Lok;Lee, Kyung-Woo;Chang, Hoon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.7-13
    • /
    • 2010
  • In this study, we investigated the efficient FE modelling techniques for thermal stress analysis of the exhaust manifold subject to thermo-mechanical cyclic loadings. At first, full engine model was considered to identify the critical locations and their results were compared to failure site shown by the engine bench test. And the equivalent system model was proposed based on the mechanical behavior of the full engine model. The weak areas of both FE models show a good agreement with the experimental crack location. As a result, a simplified modelling methodology was verified to estimate the thermo-mechanical behaviors of the exhaust manifold under thermal shock test condition.

Damping updating of a building structure installed with an MR damper

  • Woo, Sung-Sik;Lee, Sang-Hyun
    • Smart Structures and Systems
    • /
    • v.12 no.6
    • /
    • pp.695-705
    • /
    • 2013
  • The purpose of this paper is to identify through experiments the finite element (FE) model of a building structure using a magnetorheological (MR) fluid damper. The FE model based system identification (FEBSI) technique evaluates the control performance of an MR damper that has nonlinear characteristics as equivalent linear properties such as mass, stiffness, and damping. The Bingham and Bouc-Wen models were used for modeling the MR damper and the equivalent damping increased by the MR damper was predicted by applying an equivalent linearization technique. Experimental results indicate that the predicted equivalent damping matches well with the experimentally obtained damping.

A Finite Element Model for Bipolar Resistive Random Access Memory

  • Kim, Kwanyong;Lee, Kwangseok;Lee, Keun-Ho;Park, Young-Kwan;Choi, Woo Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.3
    • /
    • pp.268-273
    • /
    • 2014
  • The forming, reset and set operation of bipolar resistive random access memory (RRAM) have been predicted by using a finite element (FE) model which includes interface effects. To the best of our knowledge, our bipolar RRAM model is applicable to realistic cell structure optimization because our model is based on the FE method (FEM) unlike precedent models.

Chemical Abundance Analysis of Ultra Metal-Poor ([Fe/H] < -4.0) Stars

  • Jeong, Mi Ji;Lee, Young Sun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.87.1-87.1
    • /
    • 2017
  • We present preliminary results of elemental abundances of six ultra-metal poor (UMP; [Fe/H] < -4.0) stars derived from high-resolution spectra obtained by Gemini/GRACES. The UMP candidates were selected for the high-resolution follow-up from the low-resolution spectra of Sloan Digital Sky Survey (SDSS). We investigate possible progenitors of the UMP objects by comparing the measured abundance patterns with yields that various supernova models predict. Our results can provide stringent constraints on the mass range of the first generation of stars, which are the progenitors of the UMP objects.

  • PDF

Design of the precision micro-positioning stage (초정밀 마이크로 위치결정 스테이지의 설계)

  • 한창수;김경호;이찬홍
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.539-542
    • /
    • 1997
  • We present a micro-positioning stage that has minimized geometrical error and can drive in the 4-axis. This stage divided into two parts: $Z\theta_x$ $\theta_y$, motion stage and$\theta_z$ motion stage. These stages are constructed in flexure hinges, piezoelectric actuators and displacement scnsors. The dynamic model for each stage is obtained and their FE (finite element) models are made. Using the Lagrange's equation, the motion of equation is found. Through the parametric analysis and FE analysis, sensitiv~ty of the design parameters is executed. Finally, fundamental frequencies, maximum stress, and displacement sensitivity for each stage are obtained. We expect that this micro-positioning stage be a useful micro-alignment device for various applications.

  • PDF

Model Reduction Considering Both Resonances and Antiresonances (공진과 반공진 특성을 동시고려한 모델 축소)

  • 허진석;이시복;이창일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.985-990
    • /
    • 2001
  • The Frequency Response Function(FRF)s of FE Model reduced by SEREP methods accurately estimate the full model at resonance frequencies, However these FRFs are not accurate at antiresonance frequencies, Additionally, the truncation errors may he significant in the reduction mode1. So this paper considers the possibility of SERFP method through a numerical method to preserve dynamic behavior at antiresonance and appliers the static or dynamic compensation methods for truncation errors to the reduction model. This compensated reduction model is redesigned for pole-zero cancellation methods the objective of reducing a resonance frequency.

  • PDF