• Title/Summary/Keyword: FE models

Search Result 621, Processing Time 0.022 seconds

Analysis and design of eccentrically loaded lightweight aggregate concrete-encased steel slender columns

  • Mostafa M.A. Mostafa
    • Structural Engineering and Mechanics
    • /
    • v.88 no.1
    • /
    • pp.25-42
    • /
    • 2023
  • This paper presents a finite element (FE) simulation of eccentrically loaded lightweight aggregate concrete-encased steel (LACES) columns with H-shaped steel sections, analytical equations are also established to estimate the columns' axial and bending moment interaction capacities. The validity of the proposed models is checked by comparing the results with experimental data. Good agreements between the test and proposed models' results are found with acceptable agreements. Moreover, design parameters, including the lightweight aggregate concrete (LWAC) strength, eccentricity, column slenderness ratio, and confinement, are studied using the FE analysis, and their efficiency factors are discussed. The results show that the ultimate axial capacity of the LACES composite columns subjected to eccentric loading is negatively affected by the increase in the columns' height, but it is positively affected by the increase of the confinement. Increasing the eccentricity and columns' height reduced the columns'stiffness. In addition, the ultimate capacity of the LACES column is significantly influenced by the LWAC strength and eccentricity, where the ultimate capacity of the LACES column is significantly increased by increasing LWAC strength, and it is remarkably decreased by increasing the eccentricity. When the eccentricity changed from zero to 70 mm, the ultimate axial capacity and stiffness decreased by 67.97% and 63.56%, respectively.

The isochrones for the various abundance of C, N, O, Na, Mg, Al, Si, and Fe

  • Beom, Minje;Lee, Young-Wook;Ferguson, Jason W.;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.89.2-89.2
    • /
    • 2015
  • This research is to study the effects of individual metal elements(C, N, O, Na, Mg, Al, Si, and Fe) on the standard stellar models. The mixtures of the stellar models have been constructed to analyze the stars, extremely changed in the abundance of these elements. Therefore the mixture are based on the recent observation of stars in globular clusters. And the mass and metallicity grids have been decided in range $0.7{\sim}1.0M_{\odot}$ and 0.0002 ~ 0.007, respectively. The evolutionary tracks and isochrones, as well as the physical changes at each evolutionary phase, have been analyzed. Consequently, we present the mechanisms of the physical changes at each phase, and the quantified effects of the individual elements.

  • PDF

The development and application of on-line model for the prediction of strip temperature in hot strip rolling (열간 사상 압연중 판 온도예측 모델 개발 및 적용)

  • Lee J. H.;Choi J. W.;Kwak W. J.;Hwang S. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.336-345
    • /
    • 2004
  • Investigated via a series of finite-element(FE) process simulation is the effect of diverse process variables on some selected non-dimensional parameters characterizing the thermo-mechanical behavior of the roll and strip in hot strip rolling. Then, on the basis of these parameters, on-line models are derived for the precise prediction of the temperature changes occurring in the bite zones as well as in the inter-stand zones in a finishing mill. The prediction accuracy of the proposed models is examined through comparison with predictions from a FE process model.

  • PDF

Experimental and analytical investigations for behaviors of RC beams strengthened with tapered CFRPs

  • Kim, Naeun;Kim, Young Hee;Kim, Hee Sun
    • Structural Engineering and Mechanics
    • /
    • v.53 no.6
    • /
    • pp.1067-1081
    • /
    • 2015
  • This study investigates structural and mechanical behaviors of RC (Reinforced concrete) beams strengthened with tapered CFRP (Carbon fiber reinforced polymer) sheets having various configurations. Toward this goal, experiments are performed on RC beams strengthened with four layers of CFRP sheets and each layer of the CFRP is prepared to have different length. Experimental results show that tapered CFRPs have better strengthening effect than non-tapered CFRP sheets and maximum loads of the beams with tapered CFRPs are governed by the length of first CFRP layer rather than total length of CFRP layers. In addition, analyses are performed using FE (Finite Element) models including cohesive elements to predict debonding behaviors between FRP and concrete elements. The predicted results from the FE models show good agreement with the experimental results.

Determination of Material Parameters for Microstructure Prediction Model Based on Recystallization and Grain Growth Behaviors (재결정 및 결정립 성장거동을 기초한 조직예측 모델에 대한 변수 결정방법)

  • Yeom, J.T.;Kim, J.H.;Hong, J.K.;Park, N.K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.270-273
    • /
    • 2009
  • This work describes a method of determining material parameters included in recrystallization and grain growth models. Focus is on the recrystallization and grain growth models of Ni-Fe base superalloy, Alloy 718. High temperature compression tests at different strain, strain rate and temperature conditions were chosen to determine the material parameters of dynamic recrystallization model. The critical strain and dynamically recrystallized grain size and fraction at various process variables were quantitated with the microstructual analysis and strain-stress relationships of the compression tests. Besides, isothermal heat treatments were utilized to fit the material constants included in the grain growth model. Verification of the determined material parameters is carried out by comparing the measured data obtained from other compression tests.

  • PDF

Dynamic behavior of pergola bridge decks of high-speed railways

  • Ugarte, Jokin;Carnerero, Antonio;Millanes, Francisco
    • Structural Engineering and Mechanics
    • /
    • v.61 no.1
    • /
    • pp.91-103
    • /
    • 2017
  • This paper analyzes the dynamic behavior of the deck of pergola bridges affected by moving loads, specifically high-speed trains. Due to their characteristic advantages, pergola bridges have become a widely used structural typology on high-speed railways. In spite of such wide-spread use, there are few technical bibliographies published in this field. The first part of this paper develops a simple analytical methodology to study the complex dynamic behavior of these double dimensional structures. The second part compares the results obtained by the proposed formulae and the dynamic response obtained with different and gradually more complex FE models. The results obtained by the analytical model are in close agreement with those obtained by the FE models, demonstrating its potential application in the early design stages of this kind of structure.

Estimation on a Contact Size Effect in Fretting Fatigue Between Cylindrical Pad and Flat Specimen (실린더형 패드와 평판 시험편간 프레팅 피로의 접촉폭 크기효과에 관한 평가)

  • Kim, Jin-Kwang;Cho, Sang-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.6
    • /
    • pp.116-125
    • /
    • 2008
  • In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.

Updating of a Finite Element Model with Damping Effect Using Frequency Response Functions (주파수응답함수를 이용한 감쇠가 있는 유한요소모형의 개선)

  • Lee, Hyung-Seok;Woo, Sang-Yeon;Lee, Gun-Myung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.708-713
    • /
    • 2000
  • Finite element analysis is frequently used to get dynamic characteristics of complex structures. Since the results often show differences from experimentally measured ones, updating of finite element models is performed to make the FE results agree with measured ones. Among several model updating methods, one is to use frequency response function data. This paper investigates characteristics of the model updating method using simulated and experimental data for a cantilever beam. Damping effect is included in FE models, and FRFs for rotational displacements are calculated from FRFs for translational displacements using interpolation.

  • PDF

Theoretical and experimental investigation of piezoresistivity of brass fiber reinforced concrete

  • Mugisha, Aurore;Teomete, Egemen
    • Computers and Concrete
    • /
    • v.23 no.6
    • /
    • pp.399-408
    • /
    • 2019
  • Structural health monitoring is important for the safety of lives and asset management. In this study, numerical models were developed for the piezoresistive behavior of smart concrete based on finite element (FE) method. Finite element models were calibrated with experimental data collected from compression test. The compression test was performed on smart concrete cube specimens with 75 mm dimensions. Smart concrete was made of cement CEM II 42.5 R, silica fume, fine and coarse crushed limestone aggregates, brass fibers and plasticizer. During the compression test, electrical resistance change and compressive strain measurements were conducted simultaneously. Smart concrete had a strong linear relationship between strain and electrical resistance change due to its piezoresistive function. The piezoresistivity of the smart concrete was modeled by FE method. Twenty-noded solid brick elements were used to model the smart concrete specimens in the finite element platform of Ansys. The numerical results were determined for strain induced resistivity change. The electrical resistivity of simulated smart concrete decreased with applied strain, as found in experimental investigation. The numerical findings are in good agreement with the experimental results.

Process Metamorphosis and On-Line FEM for Mathematical Modeling of Metal Rolling-Part II: Application

  • Zamanian, A.;Nam, S.Y.;Shin, T.J.;Hwang, S.M.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.89-97
    • /
    • 2019
  • In this paper, we examine the application of a new concept - on-line FE model in various metal rolling processes. This technology allows for completion of process simulation within a tiny fraction of a second without losing the high level of prediction accuracy inherent to FEM. The procedure is systematically demonstrated through the design of actual on-line models for the prediction of the width spread in horizontal rolling of the slab using a dog bone profile and horizontal rolling of the strip with a strip profile. The validity and the prediction accuracy of the on-line FE models were analyzed and discussed.