• Title/Summary/Keyword: FE code

Search Result 218, Processing Time 0.026 seconds

Comparison of piezoelectric flextentional sonar transducer simulations between a coupled FE-BEM and ATILA code (결합형 유한요소-경계요소 기법과 ATILA와의 압전체 유연성 쏘나 변환기 시뮬레이션 비교)

  • Soon-Suck Jarng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.3 no.3
    • /
    • pp.559-567
    • /
    • 1999
  • A piezoelectric flextentional sonar transducer has been simulated using a coupled FE-BEM. The dynamics of the sonar transducer is modelled in three dimensions and is analyzed with external electrical excitation conditions. Different results are available such as steady-state displacement modes, underwater directivity patterns, resonant frequencies, bandwidths, quality factors, output acoustic powers and transmitting voltage responses. It is shown that the present barrel-stave sonar transducer of the piezoelectric material produces flextentional displacements which could be related with higher output power, lower quality factor and more omnidirectional beam pattern than other types of sonar transducers. The results of the present sonar transducer modelling are also compared with those of a commercial package such as ATILA.

  • PDF

Effect of Processing Conditions on the Deep Drawability of Ti-6Al-4V Sheet at Warm Temperatures (Ti-6Al-4V판재의 온간 딥드로잉 성형성에 미치는 공정변수의 영향)

  • Shin, G.S.;Park, J.G.;Kim, J.H.;Kim, Y.S.;Park, Y.H.;Park, N.K.
    • Transactions of Materials Processing
    • /
    • v.24 no.1
    • /
    • pp.5-12
    • /
    • 2015
  • In the current study, fundamental deep drawing characteristics of Ti-6Al-4V alloy sheets were investigated to establish the effect of processing conditions on large size square deep drawn cups. To accomplish this study, FE-simulations (Abaqus) were performed to determine optimum blank size, friction coefficient, the gap between punch and die, etc. The simulated processing parameters were verified experimentally. Based on the FE-simulation results, deep drawing was performed with various blank holding loads and sample sizes. In order to improve the formability of Ti-6Al-4V sheet, various lubricant methods were evaluated. Tensile tests and thickness measurements were conducted on the formed sheets. Processing parameters including blank holding force, lubricants, and optimum blank size, were selected to achieve improved drawing quality. With the optimum processing condition, a $200mm{\times}200mm$ cup was deep drawn successfully.

Research on the Analysis Method of Thermal Buckling of Subsea Pipeline Structures (해저 파이프라인 열좌굴 해석방법에 관한 연구)

  • Yang, Seung-Ho;Jung, Jong-Jin;Lee, Woo-Sub;Do, Chang-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.2
    • /
    • pp.225-232
    • /
    • 2010
  • The requirement of design of High-Pressure/High-Temperature(HP/HT) pipelines on an seabed increases in recent years. The need of research on the analysis method to improve the design capacity is increasing. The purpose of this study is the development of the analysis method of thermal buckling of subsea pipeline structures. The analysis method of thermal buckling was established by using the commercial FEM code(ABAQUS) which shows the outstanding performance in non-linear static FE analysis. The developed method has been applied to the installation of subsea pipeline on the offshore project. For a validation, the comparative study has been carried out. This application to offshore project demonstrates the superiority of the analysis method of thermal buckling of subsea pipeline structures and testifies the application to detail design.

Marble wastes as amendments to stabilize heavy metals in Zn-Electroplating sludge

  • Riahi, Khalifa;Chaabane, Safa;Thayer, Bechir Ben
    • Advances in environmental research
    • /
    • v.6 no.1
    • /
    • pp.15-23
    • /
    • 2017
  • Powdered marble wastes (PMW) generated by Utique marble cutting industries (North of Tunisia) with abundant amounts were used in this study as low-cost materials to investigate the stabilization of heavy metals (Pb, Zn, Fe) in sludge generated from a local Zn-Electroplating factory. Powdered marble wastes were evaluated by means of chemical fractions of heavy metals in sludge and concentrations of heavy metals in leachate from columns to determine their ability to stabilize heavy metals in contaminated sludge. Results indicated that chemical fractions of heavy metals in sludge were affected by application of the PMW mineral materials and pH, however, the effects varied with heavy metals. Application of the powdered marble wastes mineral materials reduced exchangeable metals in the sequence of Pb (60.5%)>Fe (40.5%)>Zn (30.1%). X-ray diffraction and hydro-geochemical transport code PHREEQC analysis were successfully carried out to get a better understanding of the mechanisms of reactive mineral phases involved in reduced exchangeable heavy metals in sludge after PMW material amendments. Therefore, metal immobilization using powdered marble wastes materials is an effective stabilization technique for industrial metallic hydroxide sludge.

In-Plane Stability of Concrete-Filled Steel Tubular Parabolic Truss Arches

  • Liu, Changyong;Hu, Qing;Wang, Yuyin;Zhang, Sumei
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1306-1317
    • /
    • 2018
  • For determining the in-plane buckling resistance of a concrete-filled steel tubular (CFST) arch, the current technical code GB50923-2013 specifies the use of an equivalent beam-column method which ignores the effect of rise-to-span ratio. This may induce a gap between the calculated result and actual stability capacity. In this study, a FE model is used to predict the buckling behavior of CFST truss arches subjected to uniformly distributed loads. The influence of rise-to-span ratio on the capacity of truss arches is investigated, and it is found that the stability capacity reduces as rise-to-span ratio declines. Besides, the calculations of equivalent slenderness ratio for different truss sections are made to consider the effect of shear deformation. Moreover, based on FE results, a new design equation is proposed to predict the in-plane strength of CFST parabolic truss arches under uniformly distributed loads.

Thermal stress intensity factor solutions for reactor pressure vessel nozzles

  • Jeong, Si-Hwa;Chung, Kyung-Seok;Ma, Wan-Jun;Yang, Jun-Seog;Choi, Jae-Boong;Kim, Moon Ki
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2188-2197
    • /
    • 2022
  • To ensure the safety margin of a reactor pressure vessel (RPV) under normal operating conditions, it is regulated through the pressure-temperature (P-T) limit curve. The stress intensity factor (SIF) obtained by the internal pressure and thermal load should be obtained through crack analysis of the nozzle corner crack in advance to generate the P-T limit curve for the nozzle. In the ASME code Section XI, Appendix G, the SIF via the internal pressure for the nozzle corner crack is expressed as a function of the cooling or heating rate, and the wall thickness, however, the SIF via the thermal load is presented as a polynomial format based on the stress linearization analysis results. Inevitably, the SIF can only be obtained through finite element (FE) analysis. In this paper, simple prediction equations of the SIF via the thermal load under, cool-down and heat-up conditions are presented. For the Korean standard nuclear power plant, three geometric variables were set and 72 cases of RPV models were made, and then the heat transfer analysis and thermal stress analysis were performed sequentially. Based on the FE results, simple engineering solutions predicting the value of thermal SIF under cool-down and heat-up conditions are suggested.

Numerical studies on axially loaded doubler plate reinforced elliptical hollow section T-joints

  • Sari, Busra;Ozyurt, Emre
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.107-116
    • /
    • 2022
  • This paper presents results of numerical studies completed on unreinforced and doubler plate reinforced Elliptical Hollow Section (EHS) T-joints subjected to axial compressive loading on the brace member. Non-linear finite element (FE) models were developed using the finite element code, ABAQUS. Available test data in literature was used to validate the FE models. Subsequently, a parametric study was carried out to investigate the effects of various geometrical parameters of main members and reinforcement plates on the ultimate capacity of reinforced EHS T-joints. The parametric study found that the reinforcing plate significantly increases the ultimate capacity of EHS T-joints up to twice the capacity of the corresponding unreinforced joint. The thickness and length of the reinforcing plate have a positive effect on the ultimate capacity of Type 1 joints. This study, however, found that the capacity of Type 1 orientation is not dependent on the brace-to-chord diameter ratio. As for type 2 orientations, the thickness and length of the reinforcement have a minimal effect on the ultimate capacity. A new design method is introduced to predict the capacity of the reinforced EHS T-joints Type 1 and 2 based on the multiple linear regression analyses.

Heavy metal exposure assessment of recycled plastic buckets (재활용 플라스틱 제품 중 고무대야의 중금속 노출량 평가)

  • Kim, Min-Sun;Kim, Woo Il;Shin, Sun Kyoung;Kang, Young-Yeul;Cho, Yoon-A;Jeong, Seong-Kyeong;Jin, Na;Yeon, Jin-Mo;Lee, Ji-Young
    • Analytical Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.67-72
    • /
    • 2013
  • This study has been conducted to provide a management plan for recycled products (plastic wastes) by identifying hazardous substances present in it and conducting exposure assessment. The concentration of 7 heavy metals (Cd, Cr, Cu, Fe, Hg, Pb, Zn) was analyzed. Exposure scenario was assumed by the consumption of kimchi made in a recycled plastic bucket. According to the analysis, all of the analyzed samples were within the food code standard level except one sample (137.03 mg/kg, sum of Cd, $Cr^{6+}$, Pb and Hg). In leaching test, all of heavy metals were within the leaching standard (Standards specifications of utensil and container-Packing). In an oral exposure test, Fe, Pb and Zn were detected in cabbages and were below PMTDI (Provisional Maximum Tolerable Daily Intake). As one of the recycled plastic buckets exceeded the standard level, we conclude not to recommend the recycled plastic buckets for cooking purpose.

Three-dimensional FE analysis of headed stud anchors exposed to fire

  • Ozbolt, Josko;Koxar, Ivica;Eligehausen, Rolf;Periskic, Goran
    • Computers and Concrete
    • /
    • v.2 no.4
    • /
    • pp.249-266
    • /
    • 2005
  • In the present paper a transient three-dimensional thermo-mechanical model for concrete is presented. For given boundary conditions, temperature distribution is calculated by employing a three-dimensional transient thermal finite element analysis. Thermal properties of concrete are assumed to be constant and independent of the stress-strain distribution. In the thermo-mechanical model for concrete the total strain tensor is decomposed into pure mechanical strain, free thermal strain and load induced thermal strain. The mechanical strain is calculated by using temperature dependent microplane model for concrete (O$\check{z}$bolt, et al. 2001). The dependency of the macroscopic concrete properties (Young's modulus, tensile and compressive strengths and fracture energy) on temperature is based on the available experimental database. The stress independent free thermal strain is calculated according to the proposal of Nielsen, et al. (2001). The load induced thermal strain is obtained by employing the biparabolic model, which was recently proposed by Nielsen, et al. (2004). It is assumed that the total load induced thermal strain is irrecoverable, i.e., creep component is neglected. The model is implemented into a three-dimensional FE code. The performance of headed stud anchors exposed to fire was studied. Three-dimensional transient thermal FE analysis was carried out for three embedment depths and for four thermal loading histories. The results of the analysis show that the resistance of anchors can be significantly reduced if they are exposed to fire. The largest reduction of the load capacity was obtained for anchors with relatively small embedment depths. The numerical results agree well with the available experimental evidence.

Blank Design of SPFH 590 Steel Sheet for Stamping of Center Hinge of Automotive via Analysis of Transfer Forming Process with Multi-Stages (다단 이송 성형 공정 해석을 통한 자동차 센터 힌지 성형용 SPFH 590 고강도 강판 블랭크 설계)

  • Ahn, Dong-Gyu;Song, Dong-Han;Sohn, Sang-Sik;Han, Gil-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.5
    • /
    • pp.75-84
    • /
    • 2010
  • The aim of this paper is to design the blank shape of SPFH 590 high strength steel for stamping of the center hinge of automotive via numerical analyses and experiments for multi-stages transfer forming process. Three-dimensional elasto-plastic finite element analyses for the transfer forming process with six stages were performed using a commercial code AUTOFORM V4.2. The influence of the blank shape on the formability and the shape conformity were quantitatively examined through the FE analyses. From the results of the FE analysis, a feasible shape of the blank and the forming load were estimated. Stamping experiments were carried out using the proposed blank shape. The results of experiments were shown that the center hinge parts with the desired shapes can be manufactured successfully as the proposed blank shape is used. Through the comparison of the results of the experiments with those of the analyses, it was shown that the estimation of blank shape using the FE analysis is a proper methodology to create a feasible shape of the blank for the center hinge of automotive.