• Title/Summary/Keyword: FDS (fire dynamics simulator)

Search Result 144, Processing Time 0.029 seconds

Effects of Initial Condition and Opening Geometry of a Compartment on the Gravity Current in the Backdraft (백드래프트의 중력흐름에 미치는 구획실 내부 초기조건 및 개구부 형상의 영향)

  • Park, Ji-Woong;Oh, Chang Bo;Han, Yong Shik;Do, Kyu Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.18-25
    • /
    • 2015
  • Computational study of a gravity current prior to the backdraft was conducted using fire dynamic simulator (FDS). Various initial conditions of mixture compositions and compartment temperature as well as four opening geometries (Horizontal, Door, Vertical, and Full opening) were considered to figure out their effects on the gravity current. The density difference ratio (${\beta}$) between inside and outside of compartment, the gravity current time ($t_{grav}$) and velocity ($v_{grav}$), and non-dimensional velocity ($v^*$) were introduced to quantify the flow characteristics of the gravity current. Overall fluid structure of the gravity current at the fixed opening geometry showed similar development process for different ${\beta}$ conditions. However, $t_{grav}$ for entering air to reach the opposed wall to the opening geometry increased with ${\beta}$. Door, Vertical, and Horizontal openings where openings are attached on the ground showed similar development process of the gravity current except for Horizontal opening, which located on the middle of the opening wall. The magnitude of $v_{grav}$ at fixed ${\beta}$ was, from largest to smallest, Full > Vertical > Door > Horizontal, but it depended on both the size and location of the opening. On the other hand, $v^*$ was found to be independent to ${\beta}$, and only depended on the geometry of the opening.

Computation of Nonpremixed Methane-Air Diffusion Flames in Microgravity (무중력에서의 비예혼합 메탄-공기 확산화염의 전산)

  • Park, Woe-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.1
    • /
    • pp.124-130
    • /
    • 2004
  • The structure of the nonpremixed methane-air counterflow flames in microgravity was investigated by axisymmetric simulation with Fire Dynamics Simulator (FDS) to evaluate the numerical method and to see the effects of strain rate and fuel concentration on the diffusion flame structure in microgravity. Results of FDS for the methane mole fractions, $X_m$=20, 50, and 80% in the fuel stream, and the global strain rates $a_g$=20, 50, and $90s^{-1}$ for each methane mole fraction were compared with those of OPPDIF, an one-dimensional flamelet code. There was good agreement in the temperature and axial velocity profiles between the axisymmetric and one-dimensional computations. It was shown that FDS is applicable to the counterflow flames in a wide range of strain rate and fuel concentration by predicting accurately the flame thickness, flame positions and stagnation points.

Fire Protection System for Ubiquitous Environment (유비쿼터스 환경을 위한 소방시스템)

  • Kang, Won-Chan;Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Young-Dong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.3
    • /
    • pp.141-147
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system. this is major factor that reduces damage of our wealth. therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

Fire Protection equipment for Ubiquitous System (유비쿼터스 시스템을 이용한 소방설비)

  • Kim, Nam-Oh;Min, Wan-Ki;Shin, Suck-Doo;Kim, Hyung-Chul;Kang, Won-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10a
    • /
    • pp.139-144
    • /
    • 2005
  • In this paper, We are going to propose the fire protection system with using CAN(Controller Area Network). The larger, higher and deeper buildings are, the more dangerous people are when fire happens. We should be aware of the problems of prior fire protection system. Therefore, we construct embedded system based on CAN communication that is capable of N:N communication, and build independent fire protection system. If the fire is occurred on the building, the problem is that how fast we can detect the fire and put off it by using available system, this is major factor that reduces damage of our wealth, therefore in this studies We would like to design more stable system than current system. this system that is based on CAN communication which is available N:N communication constructs and is designed to compensate for each fault so that our aim is to reduce the line of system and cost of installation and to suppose future type fire protection system. We are simulated by NIST FDS(Fire Dynamics Simulator) to prove the efficiency of this system.

  • PDF

Sensing Characteristics of Fire Detectors in Railway Tunnel by Using Numerical Analysis (수치해석을 이용한 화재감지기 철도터널 화재 감지특성 연구)

  • Park, Won-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.11
    • /
    • pp.7964-7970
    • /
    • 2015
  • In enclosed areas such as railway tunnels, the heat and smoke generated by a fire can pose a tremendous risk to the life of passengers. To prevent or mitigate such scenarios, fire detectors are installed for early fire detection. This numerical study is preformed for establishing the method of detecting performance of fire detectors installed on railway tunnels. Numerical analysis are conducted using the fire dynamics simulator, developed by the NIST. The temperature of the tunnel walls is determined using the assumed exterior structure of the tunnel. In addition, the detection times of detectors installed at different locations in the tunnel are obtained for different sizes of the fire source, and the results are compared and analyzed.

TURBULENT FLOW CHARACTERISTICS OF CHANNEL FLOW USING LARGE EDDY SIMULATION WITH WALL-FUNCTION(FDS CODE) (벽 함수가 적용된 대와류 모사(FDS 코드)의 채널에서의 난류 유동 특성)

  • Jang, Yong-Jun;Ryu, Ji-Min;Ko, Han Seo;Park, Sung-Huk;Koo, Dong-Hoe
    • Journal of computational fluids engineering
    • /
    • v.20 no.3
    • /
    • pp.94-103
    • /
    • 2015
  • The turbulent flow characteristics in the channel flow are investigated using large eddy simulation(LES) of FDS code, built in NIST(USA), in which the near-wall flow is solved by Werner-Wengle wall function. The periodic flow condition is applied in streamwise direction to get the fully developed turbulent flow and symmetric condition is applied in lateral direction. The height of the channel is H=1m, and the length of the channel is 6H, and the lateral length is H. The total grid is $32{\times}32{\times}32$ and $y^+$ is kept above 11 to fulfill the near-wall flow requirement. The Smagorinsky model is used to solve the sub-grid scale stress. Smagorinsky constant $C_s$ is 0.2(default in FDS). Three cases of Reynolds number(10,700, 26,000, 49,000.), based on the channel height, are analyzed. The simulated results are compared with direct numerical simulation(DNS) and particle image velocimetry(PIV) experimental data. The linear low-Re eddy viscosity model of Launder & Sharma and non-linear low-Re eddy viscosity model of Abe-Jang-Leschziner are utilized to compare the results with LES of FDS. Reynolds normal stresses, Reynolds shear stresses, turbulent kinetic energys and mean velocity flows are well compared with DNS and PIV data.

The Analysis of Fire-Driven Flow and Temperature in The Railway Tunnel with Ventilation (환기를 동반한 철도터널 화재 연기유속 및 온도장 해석)

  • Jang, Yong-Jun;Lee, Chang-Hyun;Kim, Hag-Beom;Lee, Woo-Dong
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.1794-1801
    • /
    • 2008
  • Fire-driven flow and temperature distribution in a ventilated tunnel was analyzed by Large Eddy Simulation using FDS code. The simulated tunnel is 182m length, 5.4m wide and 2.4m height. A pool fire was located 112m from tunnel entrance and was taken as a heat source of $0.89m^2$. The heat is assumed to be released uniformly throughout the whole simulated time. The fire strength was 2.76MW and the fuel burnt was octane. The parallel computational method was employed to accelerate the computing time and manage the large grid points which is not possible to handle in the one CPU. The total grid points used were $2.4{\times}10^6$ and 7 CPUs were used to calculate the momentum and energy equations. The simulated results were well compared with the experiments.

  • PDF

A Study on the Effective Smoke Control Method of Large Volume Space Comparted by Smoke Reservoir Screen (제연경계벽으로 구획된 대형공간의 효과적인 제연방안에 관한 연구)

  • Kim, Tae-Hoon;Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This research examines problem that can happen in partial smoke control method among contiguity area smoke control system through engineering examination and CFD. And the ultimate purpose of this is to secure safety of a person inhabiting at fire department by presenting improvement plan. Now a days, in large space-area such as department store or mega-mall in which mainly applies "Partial Smoke Control Method", air is suppled from adjacent area and smoke is exhausted in fire room. For various reason, however, it is confirmed through simulation that if air is suppled in one direction, this can cause a fatal result to people of fire area because of the difficulty in securing the evacuation time. As an improvement plan, air is supplied at the same time in surroundings to fire department.

Simulation & Validation of Lubricating Oil Fire in Nuclear Power Plant Pump Room (원전 펌프실 윤활유화재 분석 및 확인에 관한 연구)

  • Park, Jong-Seuk;Park, Yoon-Jeong;Lee, Chang-Joo
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.241-245
    • /
    • 2010
  • 화재방호에 성능기반 개념을 도입함에 따라 화재모델링의 활용도는 점점 높아지고 있다. 본 연구의 목적은 FDS를 이용하여 원자력발전소 펌프실의 윤활유 화재 시 케이블의 손상여부를 평가하고, 확인분석을 통해 화재모델링의 적합성을 파악하는 데 있다. 화재는 펌프 주변의 누출된 윤활유에서 발생하며 화원의 면적은 $2.75m^2$이고 단위면적당 열방출율은 $1,794kW/m^2$로 가정하였다. 계산결과, 고온기체층의 온도는 $400^{\circ}C$를 상회하고 있으나 케이블 트레이의 온도는 $50^{\circ}C$ 아래로 예측되고 있어 본 화재시나리오에서 케이블의 건전성은 유지되고 있으며 밀폐된 격실에서의 대형화재는 환기지배형 화재가 된다는 것을 보여주고 있다. 또한 확인분석 결과, 화재 시나리오의 주요 변수인 열방출율, 격실크기 그리고 강제 환기 변수가 확인계산 범위 내에 있어 본 계산결과는 NUREG-1824의 확인요건을 만족하고 있다. 따라서 펌프실 윤활유 화재에 대한 모델링의 적합성을 확인하였다.

  • PDF

Customized Evacuation Pathfinding through WSN-Based Monitoring in Fire Scenarios (WSN 기반 화재 상황 모니터링을 통한 대피 경로 도출 알고리즘)

  • Yoon, JinYi;Jin, YeonJin;Park, So-Yeon;Lee, HyungJune
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.11
    • /
    • pp.1661-1670
    • /
    • 2016
  • In this paper, we present a risk prediction system and customized evacuation pathfinding algorithm in fire scenarios. For the risk prediction, we apply a multi-level clustering mechanism using collected temperature at sensor nodes throughout the network in order to predict the temperature at the time that users actually evacuate. Based on the predicted temperature and its reliability, we suggest an evacuation pathfinding algorithm that finds a suitable evacuation path from a user's current location to the safest exit. Simulation results based on FDS(Fire Dynamics Simulator) of NIST for a wireless sensor network consisting of 47 stationary nodes for 1436.41 seconds show that our proposed prediction system achieves a higher accuracy by a factor of 1.48. Particularly for nodes in the most reliable group, it improves the accuracy by a factor of up to 4.21. Also, the customized evacuation pathfinding based on our prediction algorithm performs closely with that of the ground-truth temperature in terms of the ratio of safe nodes on the selected path, while outperforming the shortest-path evacuation with a factor of up to 12% in terms of a safety measure.