• Title/Summary/Keyword: FDR sensor

Search Result 28, Processing Time 0.02 seconds

A Study on the Evaluation of Concrete Unit-Water Content of FDR Sensor Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 이용한 FDR 센서의 콘크리트 단위수량 평가에 관한 연구)

  • Lee, Seung-Yeop;Youn, Ji-Won;Wi, Gwang-Woo;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.29-30
    • /
    • 2022
  • The unit-water content has a very significant effect on the durability of the construction structure and the quality of concrete. Although there are various methods for measuring the unit-water content, there are problems of time required for measurement, precision, and reproducibility. Recently, there is an FDR sensor capable of measuring moisture content in real time through an apparent dielectric constant change of electromagnetic waves. In addition, various artificial intelligence techniques that can non-linearly supplement the accuracy of FDR sensors are being studied. In this study, the accuracy of unit-water content measurement was compared and evaluated using machine learning and deep learning techniques after normalizing the data secured in concrete using frequency domain reflectometry (FDR) sensors used to measure soil moisture at home and abroad. The result of comparing the accuracy of machine learning and deep learning is judged to be excellent in the accuracy of deep learning, which can well express the nonlinear relationship between FDR sensor data and concrete unit-water content.

  • PDF

Comparisons of Soil Water Retention Characteristics and FDR Sensor Calibration of Field Soils in Korean Orchards (노지 과수원 토성별 수분보유 특성 및 FDR 센서 보정계수 비교)

  • Lee, Kiram;Kim, Jongkyun;Lee, Jaebeom;Kim, Jongyun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.401-408
    • /
    • 2022
  • As research on a controlled environment system based on crop growth environment sensing for sustainable production of horticultural crops and its industrial use has been important, research on how to properly utilize soil moisture sensors for outdoor cultivation is being actively conducted. This experiment was conducted to suggest the proper method of utilizing the TEROS 12, an FDR (frequency domain reflectometry) sensor, which is frequently used in industry and research fields, for each orchard soil in three regions in Korea. We collected soils from each orchard where fruit trees were grown, investigated the soil characteristics and soil water retention curve, and compared TEROS 12 sensor calibration equations to correlate the sensor output to the corresponding soil volumetric water content through linear and cubic regressions for each soil sample. The estimated value from the calibration equation provided by the manufacturer was also compared. The soil collected from all three orchards showed different soil characteristics and volumetric water content values by each soil water retention level across the soil samples. In addition, the cubic calibration equation for TEROS 12 sensor showed the highest coefficient of determination higher than 0.95, and the lowest RMSE for all soil samples. When estimating volumetric water contents from TEROS 12 sensor output using the calibration equation provided by the manufacturer, their calculated volumetric water contents were lower than the actual volumetric water contents, with the difference up to 0.09-0.17 m3·m-3 depending on the soil samples, indicating an appropriate calibration for each soil should be preceded before FDR sensor utilization. Also, there was a difference in the range of soil volumetric water content corresponding to the soil water retention levels across the soil samples, suggesting that the soil water retention information should be required to properly interpret the volumetric water content value of the soil. Moreover, soil with a high content of sand had a relatively narrow range of volumetric water contents for irrigation, thus reducing the accuracy of an FDR sensor measurement. In conclusion, analyzing soil water retention characteristics of the target soil and the soil-specific calibration would be necessary to properly quantify the soil water status and determine their adequate irrigation point using an FDR sensor.

An Experimental Study on the Evaluation of Unit-Water Content Acoording to Concrete Aggregate Variables through FDR Sensor (FDR 센서를 통한 콘크리트 골재 변수에 따른 단위수량 평가에 관한 실험적 연구)

  • Youn, Ji-Won;Yu, Seung-Hwan;Yang, Hyun-Min;Yoon, Jong-Wan;Park, Tae-Joon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.70-71
    • /
    • 2021
  • The unit quantity that affects the workability, shrinkage cracking, and durability of concrete is an important factor. Methods for measuring the unit quantity include a high frequency heating method, a capacitance method, a unit volume mass method, and a simple method. However, these methods have the disadvantage of poor measurement method, time required, and precision. To solve this problem, a relatively simple and fast measurement method was adopted to compensate for the shortcomings through a Frequency Domain Reflection (FDR) sensor, and the unit quantity was used. In addition, the measurement data was analyzed by deep learning to evaluate the unit quantity of concrete.

  • PDF

An Experimental Study on the Evaluation of Concrete Unit-Water Content Using High Frequency Moisture Sensor (FDR) (고주파수분센서(FDR)를 활용한 콘크리트 단위수량 평가에 관한 실험적 연구)

  • Lee, Seung-Yeop;Yang, Hyun-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.11a
    • /
    • pp.59-60
    • /
    • 2021
  • The unit-water content has a major problem in concrete structures which leads to micro cracks on the concrete during drying time. Thus, the compressive strength and durability of the concrete structures are significantly reduced. Several techniques have been developed to measure the unit-water content in concrete structures such as heating drying, unit volume mass, and capacitance measurements. However, these techniques have problems in during measurement such as longer time, expensive and difficult in analysis of data. Frequency Domain Reflectivity (FDR) is one of the sensors which used to measure the water content. This method has several advantages including easy to measure, inexpensive, and capable of measuring moisture in real time. In this study, an attempt has been made to evaluate the unit-water content in concrete using the FDR sensor and interpret the data with deep learning method.

  • PDF

Comparisons of Water Behavior and Moisture Content between Rockwools and Coir used in Soilless Culture (무토양재배용 암면과 코이어 배지의 수분 이동 및 함수율 특성 비교)

  • Shin, Jong Hwa;Son, Jung Eek
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.39-44
    • /
    • 2015
  • To improve crop productivity with optimal water management in soilless culture, the information of physical characteristics of the root medium including water behavior should be required. The objectives of this study were to analyze the physical characteristics including hydraulic properties of the root media commercially used and to analyze the relationships between actual moisture content and measured one by FDR sensor. The weight of the medium was measured by load cell for calculating the actual moisture content. The accuracy of the moisture content measured by FDR sensor was obtained by comparing with the actual one. The water holding capacity of the coir was lower than those of the rockwool due to the features of large and rough particles of the coir. The moisture content measured by FDR sensor showed large difference from the actual moisture contents measured by loadcell, indicating that the calibration of FDR sensor is needed before starting measurement. The optimum range of moisture content for irrigation control was narrow in the coir than the rockwool due to the lower water holding capacity and rehydration capability of the coir. The results of this study can be useful in establishing adequate irrigation strategies in the soilless culture.

Effect of Plant Growth and Production of Tomato on the Water Content Control in Rockwool Culture (암면배지의 수분제어가 토마토의 생육 및 생산성에 미치는 영향)

  • Moon, Doo-Gyung;Kim, So-Hee;Cho, Myeng-Whan;Yu, In-Ho;Ryu, Hee-Ryong;Choi, Kyung-Hee;Kwon, Yong-Hee;Lee, So-Jin
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.2
    • /
    • pp.183-189
    • /
    • 2018
  • This study was carried out to investigate the effect of plant growth and production of tomato (Lycopersicon Esculentum Mill cv. Tefunis) according to the water content of non-recycled rockwool culture in high-rise tomato greenhouse. Daily irrigation amount was 3.8 times higher in the irrigation control by Integrated Solar Radiation (ISR) than in the Frequency Domain Reflectometry (FDR) sensor. Water content of ISR and FDR was 90-95 and 60-65%, respectively. Plant height and weight of tomato fruit was 1.2-1.9 times longer and 1.2-2.0 times heavier in the ISR than in the FDR sensor, respectively. No significantly differed to sugar content of tomato by treatments. Marketable fruits were the higher 1.3 times in the ISR compared with the FDR sensor. Cracking percentage in the ISR was also the higher 2.0 times compared with FDR sensor. Therefore, Irrigation control by ISR was appropriate to improve of plant growth and production of tomato with non-recycled rockwool culture in greenhouse during long-term cultivation.

Physical Model Experiment on the Seepage Characteristics through a Dam by using FDR Sensor (FDR 센서를 활용한 제체 누수특성의 실내 모형 실험 연구)

  • Kim, Gyoo-Bum;Im, Eunsang;Ryu, Ho-Cheol;Hwang, Chan-ik;Kim, Hyeong-Jong
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.715-726
    • /
    • 2018
  • Various methods, such as geophysical exploration, temperature measurement, and fiber optics, have been developed for detecting the seepage at a dam. In this study, in order to investigate the possibility of leakage detection using dielectric constant of FDR sensor, a physical model consisting of weak and no-weak zones is fabricated and the sensors for dielectric constant, temperature and pore water pressure measurements are installed. As a leakage happens, the dielectric constant changes more rapidly through a weak zone than no-weak zone. In addition, comparing three factors (dielectric constant, temperature, and pore water pressure), the response of dielectric constant to seepage is fast and it is easily recognized even at the end measurement point. Considering these features, it is concluded that it could be possible to cope with the leakage detection quickly and efficiently if the dielectric constant is measured at the downstream slope of a dam.

Comparisons in Volumes of Irrigation and Drainage, Plant Growth and Fruit Yield under FDR Sensor-, Integrated Solar Radiation-, and Timer-Automated Irrigation Systems for Production of Tomato in a Coir Substrate Hydroponic System (토마토 코이어 수경재배에서 FDR센서, 적산일사량센서 및 타이머 급액방식에 따른 급배액량, 생육 및 과실수량 비교)

  • Choi, Eun-Young;Kim, Hee-Yong;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2016
  • Water drainage from the open hydroponics often causes significant environmental pollution due to agrochemicals and loss of water and nutrients. The objectives of this study were to show the potential application of an irrigation schedule based on threshold values of volumetric substrate water content for tomato (Solanum lycopersicum L. 'Samsamgu') cultivation in a commercial hydroponic farm during spring to summer cultivation. This study was performed for minimizing effluent from coir substrate hydroponics using a frequency domain reflectometry (FDR) sensor-automated irrigation, as compared with an integrated solar-radiation (IR) and conventional timer-irrigation (TIMER) after transplanting. In results, no significant difference in daily irrigation volume was found among the treatments until 88 days after transplant (DAT). However, during the 88 to 107 DAT, the daily irrigation volume was in the order of IR (2125 mL) > TIMER (2063 mL) > FDR (1983 mL), and during the 108 to 120 DAT, it was in the order of IR (2000 mL) > TIMER (1664 mL) > FDR (1500 mL). The lowest drainage volume was observed in the FDR treatment with the order of IR (12~19%) > TIMER (4~12%) > FDR (0~7%) during the entire growing period. A lower irrigation volume in the FDR treatment after 88 DAT may be due to the sensor's detecting capacity for less water absorption by plant after completing fruit maturity with apical pruning and removal of lower leaves, while a higher irrigation volume in the IR treatment may be due to gradual increase in integrated solar-radiation amount as closer to summer season. There was no significant difference in plant growth and fruit yield among the treatments; however, a 11% and 18% of higher soluble sugar content was observed in the FDR than that of TIMER and IR treatment. respectively.

Scheduling Non-drainage Irrigation in Coir Substrate Hydroponics with Different Percentages of Chips and Dust for Tomato Cultivation using a Frequency Domain Reflectometry Sensor (토마토 수경재배에서 FDR(Frequency Domain Reflectometry) 센서를 활용한 무배액 시스템에 적합한 코이어 배지의 Chip과 Dust 비율 구명)

  • Choi, Eun-Young;Choi, Ki-Young;Lee, Yong-Beom
    • Journal of Bio-Environment Control
    • /
    • v.22 no.3
    • /
    • pp.248-255
    • /
    • 2013
  • This study examined an automated irrigation technique by a frequency domain reflectometry (FDR) sensor for scheduling irrigation for tomato (Solanum lycopersicum L. 'Starbuck F1') cultivation aimed at avoiding effluent from an open hydroponic system with coir substrate containing different ratios of chip-to-dust (v/v) content. Specifically, the objectives were to undertake preliminary measurements of irrigation volumes, leachate volume, volumetric water content and electrical conductivity (EC) in the substrate, plant growth, fruit yield, and water use efficiency resulting from variation in chip content as an initial experiment. Commercial coir substrates containing different percentages of chips and dust (0 and 100%, 30 and 70%, 50 and 50%, or 70 and 30%), two-story coir substrates with different percentages of chips in the lower layer and dust in the upper layer (15 and 85%, 25 and 75%, or 35 and 65%), or rockwool slabs were used. The results showed that a negligible or no leachate was found for all treatments when plants were grown under a technique for scheduling non-drainage irrigation using a frequency domain reflectometry (FDR) sensor. Daily irrigation volume was affected by chip content in both commercial and two-story slabs. The highest plant growth, marketable fruit weight, and water-use efficiency were observed in the plants grown in the commercial coir slab containing 0% chips and 100% dust, indicating that the FDR sensor-auto-mated irrigation may be more useful for tomato cultivation in coir substrate containing 0% chips and 100% dust using water efficiently and minimizing or avoiding leachate and thus increasing yield and reducing pollution. Detailed experiment is necessary to closely focus on determining appropriate irrigation volume at each of irrigation as well as duration of each individual irrigation cycle depending on different physical properties of substrates using an automated irrigation system operated by the FDR sensor.

Development of Continuous Monitoring Method of Root-zone Electrical Conductivity using FDR Sensor in Greenhouse Hydroponics Cultivation (시설 수경재배에서 FDR 센서를 활용한 근권 내 농도의 연속적 모니터링 방법)

  • Lee, Jae Seong;Shin, Jong Hwa
    • Journal of Bio-Environment Control
    • /
    • v.31 no.4
    • /
    • pp.409-415
    • /
    • 2022
  • Plant growth and development are also affected by root-zone environment. Therefore, it is important to consider the variables of the root-zone environment when establishing an irrigation strategy. The purpose of this study is to analyze the relationship between the volumetric moisture content (VWC), Bulk EC (ECb), and Pore EC (ECp) used by plant roots using FDR sensors in two types of rockwool media with different water transmission characteristics, using the method above this was used to establish a method for collecting and correcting available root-zone environmental data. For the experiment, two types of rockwool medium (RW1, RW2) with different physical characteristics were used. The moisture content (MC) and ECb were measured using an FDR sensor, ECp was measured after extracting the residual nutrient solution from the medium using a disposable syringe in the center of the medium at a volumetric moisture content (VWC) of 10-100%. Then, ECb and ECp are measured by supplying nutrient solution having different concentration (distilled water, 0.5-5.0) to two types of media (RW1, RW2) in each volume water content range (0 to 100%). The relationship between ECb and ECp in RW1 and RW2 media is best suited for cubic polynomial. The relationship between ECb and ECp according to volume moisture content (VWC) range showed a large error rate in the low volume moisture content (VWC) range of 10-60%. The correlation between the sensor measured value (ECb) and the ECp used by plant roots according to the volumetric water content (VWC) range was the most suitable for the Paraboloid equation in both media (RW1, RW2). The coefficient of determination the calibration equation for RW1 and RW2 media were 0.936, 0.947, respectively.