• Title/Summary/Keyword: FDM analysis

Search Result 254, Processing Time 0.034 seconds

Buckling of symmetrically laminated quasi-isotropic thin rectangular plates

  • Altunsaray, Erkin;Bayer, Ismail
    • Steel and Composite Structures
    • /
    • v.17 no.3
    • /
    • pp.305-320
    • /
    • 2014
  • The lowest critical value of the compressive force acting in the plane of symmetrically laminated quasi-isotropic thin rectangular plates is investigated. The critical buckling loads of plates with different types of lamination and aspect ratios are parametrically calculated. Finite Differences Method (FDM) and Galerkin Method are used to solve the governing differential equation for Classical Laminated Plate Theory (CLPT). The results calculated are compared with those obtained by the software ANSYS employing Finite Elements Method (FEM). The results of Galerkin Method (GM) are closer to FEM results than those of FDM. In this study, the primary aim is to conduct a parametrical performance analysis of proper plates that is typically conducted at preliminary structural design stage of composite vessels. Non-dimensional values of critical buckling loads are also provided for practical use for designers.

Reverse Engineering and 3D Printing of Turbine Housing for Tank Diesel Turbo Engine

  • Chul-Kyu Jin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_1
    • /
    • pp.977-983
    • /
    • 2023
  • The tank uses a twin turbo diesel engine equipped with two turbocharger systems for high output. The main component of the turbocharger system is the turbine housing through which the exhaust flows. Turbine housing is manufactured through a sand casting process, taking into account the shape and material characteristics according to the environmental conditions in which it is used. Currently, turbine housing is imported, and local production is necessary. In this study, basic research was conducted to localize the turbine housing of a tank diesel turbo engine. Reverse engineering and finite element analysis of the imported turbine housing were performed. The prototype of the turbine housing was printed using FDM and PBF 3D printers. The prototype of the turbine housing printed with an FDM 3D printer has an overall appearance similar to 3D modeling, but the printed surface of the whorl part is rough. The prototype printed with the PBF 3D printer is completely identical to the 3D modeling, including the whorl part.

Prediction and Measurement of Residual Stresses in Injection Molded Parts

  • Kwon, Young-Il;Kang, Tae-Jin;Chung, Kwansoo;Youn, Jae Ryoun
    • Fibers and Polymers
    • /
    • v.2 no.4
    • /
    • pp.203-211
    • /
    • 2001
  • Residual stresses were predicted by a flow analysis in the mold cavity and residual stress distribution in the injection molded product was measured. Flow field was analyzed by the hybrid FEM/FDM method, using the Hele Shaw approximation. The Modified Cross model was used to determine the dependence of the viscosity on the temperature and the shear rate. The specific volume of the polymer melt which varies with the pressure and temperature fields was calculated by the Tait\`s state equation. Flow analysis results such as pressure, temperature, and the location of the liquid-solid interface were used as the input of the stress analysis. In order to calculate more accurate gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise temperature field, a coordinate transformation technique was used. The residual stress distribution in the gap-wise direction was predicted in two cases, the free quenching, under the assumption that the shrinkage of the injection molded product occurs within the mold cavity and that the solid polymer is elastic. Effects of the initial flow rate, packing pressure, and mold temperature on the residual stress distribution was discussed. Experimental results were also obtained by the layer removal method for molded polypropylene.

  • PDF

Dynamic characterization of 3D printed lightweight structures

  • Refat, Mohamed;Zappino, Enrico;Sanchez-Majano, Alberto Racionero;Pagani, Alfonso
    • Advances in aircraft and spacecraft science
    • /
    • v.9 no.4
    • /
    • pp.301-318
    • /
    • 2022
  • This paper presents the free vibration analysis of 3D printed sandwich beams by using high-order theories based on the Carrera Unified Formulation (CUF). In particular, the component-wise (CW) approach is adopted to achieve a high fidelity model of the printed part. The present model has been used to build an accurate database for collecting first natural frequency of the beams, then predicting Young's modulus based on an inverse problem formulation. The database is built from a set of randomly generated material properties of various values of modulus of elasticity. The inverse problem then allows finding the elastic modulus of the input parameters starting from the information on the required set of the output achieved experimentally. The natural frequencies evaluated during the experimental test acquired using a Digital Image Correlation method have been compared with the results obtained by the means of CUF-CW model. The results obtained from the free-vibration analysis of the FDM beams, performed by higher-order one-dimensional models contained in CUF, are compared with ABAQUS results both first five natural frequency and degree of freedoms. The results have shown that the proposed 1D approach can provide 3D accuracy, in terms of free vibration analysis of FDM printed sandwich beams with a significant reduction in the computational costs.

Dynamic response Analysis of Rockfill Dam (필댐의 지진응답 해석)

  • 이종욱
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.113-120
    • /
    • 1999
  • When we design the large rockfill dams the safety of dams against the quake must be considered. Generally pseudostatic analysis method has been used for slope stability and evaluation of safety but the case of dynamic response analysis of earthquake was not in general in Korea. Therefore we need to perform the dynamic response analysis of rockfill dams from these results we analyze the dynamic behavior of dam body such as response displacement and response acceleration. consequently we analyse the selected model of rockfill dam using the FLAC-2D (FDM) program.

  • PDF

Development of Water Hammer Simulation Model for Safety Assessment of Hydroelectric Power Plant (수력발전설비의 안전도 평가를 위한 수충격 해석 모형 개발)

  • Nam, Myeong Jun;Lee, Jae-Young;Jung, Woo-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.760-767
    • /
    • 2020
  • Sustainable growth of hydroelectric power plants is expected in consideration of climate change and energy security. However, hydroelectric power plants always have a risk of water hammer damage, and safety assurance is very important. The water hammer phenomenon commonly occurs during operations such as rapid opening and closing of the valves and pump/turbine shutdown in pipe systems, which is more common in cases of emergency shutdown. In this study, a computational numerical model was developed using the MOC-FDM scheme to reflect the mechanism of water hammer occurrence. The proposed model was implemented in boundary conditions such as reservoir, pipeline, valve, and pump/turbine conditions and then applied to simulate hypothetical case studies. The analysis results of the model were verified using the analysis results at the main points of the pipe systems. The model produced reasonably good performance and was validated by comparison with the results of the SIMSEN package model. The model could be used as an efficient tool for the safety assessment of hydroelectric power plants based on accurate prediction of transient behavior in the operation of hydropower facilities.

Analysis of Microsegregation in Fe-Cr-Ni Weld Metal (Fe-Cr-Ni강 용접금속부의 미세편석에 관한 해석)

  • 박준민;박종민;안상곤;이창희;윤의박
    • Journal of Welding and Joining
    • /
    • v.16 no.5
    • /
    • pp.56-66
    • /
    • 1998
  • During solidification or welding of alloys, the solute redistribution brings out microsegregation. The microsegregation causes the formation of non-equilibrium second phases, shrinkage and porosity degrading mechanical/chemical properties Therefore, it has been required to predict microsegregation quantitatively. To predict the degree of microsegregation, more exact and appropriate computer simulation technique has been actively used during last two decades. To predict the degree of microsegregation in weld metal, an advanced two dimensional model was suggested. In the new model, both primary and secondary arm regions were defined for the analysis region. The growth in the primary arm regina was assumed to be a planar for effective calculation. Especially, for the growth of a secondary arm, a simple and effective mathematical function was established to show the growing pattern, the solute diffusion in the solid phase was calculated by finite difference method (FDM). The solid-liquid interface movement was considered to be in local equilibrium state. The experiments for welding of 310S stainless steel were carried out in order to examined the reasonability and feasibility of this model. The concentration profiles of the solute predicted by this model were compared with those obtained from experimental works.

  • PDF

Reduction of Computing Time through FDM using Implicit Method and Latent Heat Treatment in Solidification Analysis (FDM에 의한 응고해석시 계산시간 단축을 위한 음적해법의 적용과 잠열처리방법)

  • Kim, Tae-Gyu;Choi, Jung-Kil;Hong, Jun-Pyo;Lee, Zin-Hyoung
    • Journal of Korea Foundry Society
    • /
    • v.13 no.4
    • /
    • pp.323-332
    • /
    • 1993
  • An implicit finite difference formulation with three methods of latent heat treatment, such as equivalent specific heat method, temperature recovery method and enthalpy method, was applied to solidification analysis. The Neumann problem was solved to compare the numerical results with the exact solution. The implicit solutions with the equivalent specific heat method and the temperature recovery method were comparatively consistent with the Neumann exact solution for smaller time steps, but its error increased with increasing time step, especially in predicting the solidification beginning time. Although the computing time to solve energy equation using temperature recovery method was shorter than using enthalpy method, the method of releasing latent heat is not realistic and causes error. The implicit formulation of phase change problem requires enthalpy method to treat the release of latent heat reasonably. We have modified the enthalpy formulation in such a way that the enthalpy gradient term is not needed, and as a result of this modification, the computation stability and the computing time were improved.

  • PDF