• Title/Summary/Keyword: FCM (Fuzzy C-Means) clustering

Search Result 161, Processing Time 0.019 seconds

An Extension of Possibilistic Fuzzy C-means using Regularization (Regularization을 이용한 Possibilistic Fuzzy C-means의 확장)

  • Heo, Gyeong-Yong;NamKoong, Young-Hwan;Kim, Seong-Hoon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.1
    • /
    • pp.43-50
    • /
    • 2010
  • Fuzzy c-means (FCM) and possibilistic c-means (PCM) are the two most well-known clustering algorithms in fuzzy clustering area, and have been applied in many applications in their original or modified forms. However, FCM's noise sensitivity problem and PCM's overlapping cluster problem are also well known. Recently there have been several attempts to combine both of them to mitigate the problems and possibilistic fuzzy c-means (PFCM) showed promising results. In this paper, we proposed a modified PFCM using regularization to reduce noise sensitivity in PFCM further. Regularization is a well-known technique to make a solution space smooth and an algorithm noise insensitive. The proposed algorithm, PFCM with regularization (PFCM-R), can take advantage of regularization and further reduce the effect of noise. Experimental results are given and show that the proposed method is better than the existing methods in noisy conditions.

Design of Fuzzy Neural Networks Based on Fuzzy Clustering and Its Application (퍼지 클러스터링 기반 퍼지뉴럴네트워크 설계 및 적용)

  • Park, Keon-Jun;Lee, Dong-Yoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.378-384
    • /
    • 2013
  • In this paper, we propose the fuzzy neural networks based on fuzzy c-means clustering algorithm. Typically, the generation of fuzzy rules have the problem that the number of fuzzy rules exponentially increases when the dimension increases. To solve this problem, the fuzzy rules of the proposed networks are generated by partitioning the input space in the scatter form using FCM clustering algorithm. The premise parameters of the fuzzy rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is expressed in the form of polynomial functions and the learning of fuzzy neural networks is realized by adjusting connections of the neurons, and it follows a back-propagation algorithm. The proposed networks are evaluated through the application to nonlinear process.

Color image segmentation using the possibilistic C-mean clustering and region growing (Possibilistic C-mean 클러스터링과 영역 확장을 이용한 칼라 영상 분할)

  • 엄경배;이준환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.3
    • /
    • pp.97-107
    • /
    • 1997
  • Image segmentation is teh important step in image infromation extraction for computer vison sytems. Fuzzy clustering methods have been used extensively in color image segmentation. Most analytic fuzzy clustering approaches are derived from the fuzzy c-means (FCM) algorithm. The FCM algorithm uses th eprobabilistic constraint that the memberships of a data point across classes sum to 1. However, the memberships resulting from the FCM do not always correspond to the intuitive concept of degree of belongingor compatibility. moreover, the FCM algorithm has considerable trouble above under noisy environments in the feature space. Recently, the possibilistic C-mean (PCM) for solving growing for color image segmentation. In the PCM, the membersip values may be interpreted as degrees of possibility of the data points belonging to the classes. So, the problems in the FCM can be solved by the PCM. The clustering results by just PCM are not smoothly bounded, and they often have holes. So, the region growing was used as a postprocessing. In our experiments, we illustrated that the proposed method is reasonable than the FCM in noisy enviironments.

  • PDF

Initialization of Fuzzy C-Means Using Kernel Density Estimation (커널 밀도 추정을 이용한 Fuzzy C-Means의 초기화)

  • Heo, Gyeong-Yong;Kim, Kwang-Baek
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1659-1664
    • /
    • 2011
  • Fuzzy C-Means (FCM) is one of the most widely used clustering algorithms and has been used in many applications successfully. However, FCM has some shortcomings and initial prototype selection is one of them. As FCM is only guaranteed to converge on a local optimum, different initial prototype results in different clustering. Therefore, much care should be given to the selection of initial prototype. In this paper, a new initialization method for FCM using kernel density estimation (KDE) is proposed to resolve the initialization problem. KDE can be used to estimate non-parametric data distribution and is useful in estimating local density. After KDE, in the proposed method, one initial point is placed at the most dense region and the density of that region is reduced. By iterating the process, initial prototype can be obtained. The initial prototype such obtained showed better result than the randomly selected one commonly used in FCM, which was demonstrated by experimental results.

The Design of GA-based TSK Fuzzy Classifier and Its application (GA기반 TSK 퍼지 분류기의 설계 및 응용)

  • 곽근창;김승석;유정웅;전명근
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.233-236
    • /
    • 2001
  • In this paper, we propose a TSK-type fuzzy classifier using PCA(Principal Component Analysis), FCM(Fuzzy C-Means) clustering and hybrid GA(genetic algorithm). First, input data is transformed to reduce correlation among the data components by PCA. FCM clustering is applied to obtain a initial TSK-type fuzzy classifier. Parameter identification is performed by AGA(Adaptive Genetic Algorithm) and RLSE(Recursive Least Square Estimate). we applied the proposed method to Iris data classification problems and obtained a better performance than previous works.

  • PDF

Reconstruction from Feature Points of Face through Fuzzy C-Means Clustering Algorithm with Gabor Wavelets (FCM 군집화 알고리즘에 의한 얼굴의 특징점에서 Gabor 웨이브렛을 이용한 복원)

  • 신영숙;이수용;이일병;정찬섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.53-58
    • /
    • 2000
  • This paper reconstructs local region of a facial expression image from extracted feature points of facial expression image using FCM(Fuzzy C-Meang) clustering algorithm with Gabor wavelets. The feature extraction in a face is two steps. In the first step, we accomplish the edge extraction of main components of face using average value of 2-D Gabor wavelets coefficient histogram of image and in the next step, extract final feature points from the extracted edge information using FCM clustering algorithm. This study presents that the principal components of facial expression images can be reconstructed with only a few feature points extracted from FCM clustering algorithm. It can also be applied to objects recognition as well as facial expressions recognition.

  • PDF

Nonlinear Characteristics of Fuzzy Scatter Partition-Based Fuzzy Inference System

  • Park, Keon-Jun;Huang, Wei;Yu, C.;Kim, Yong K.
    • International journal of advanced smart convergence
    • /
    • v.2 no.1
    • /
    • pp.12-17
    • /
    • 2013
  • This paper introduces the fuzzy scatter partition-based fuzzy inference system to construct the model for nonlinear process to analyze nonlinear characteristics. The fuzzy rules of fuzzy inference systems are generated by partitioning the input space in the scatter form using Fuzzy C-Means (FCM) clustering algorithm. The premise parameters of the rules are determined by membership matrix by means of FCM clustering algorithm. The consequence part of the rules is represented in the form of polynomial functions and the parameters of the consequence part are estimated by least square errors. The proposed model is evaluated with the performance using the data widely used in nonlinear process. Finally, this paper shows that the proposed model has the good result for high-dimension nonlinear process.

A Context-Aware Information Service using FCM Clustering Algorithm and Fuzzy Decision Tree (FCM 클러스터링 알고리즘과 퍼지 결정트리를 이용한 상황인식 정보 서비스)

  • Yang, Seokhwan;Chung, Mokdong
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.7
    • /
    • pp.810-819
    • /
    • 2013
  • FCM (Fuzzy C-Means) clustering algorithm, a typical split-based clustering algorithm, has been successfully applied to the various fields. Nonetheless, the FCM clustering algorithm has some problems, such as high sensitivity to noise and local data, the different clustering result from the intuitive grasp, and the setting of initial round and the number of clusters. To address these problems, in this paper, we determine fuzzy numbers which project the FCM clustering result on the axis with the specific attribute. And we propose a model that the fuzzy numbers apply to FDT (Fuzzy Decision Tree). This model improves the two problems of FCM clustering algorithm such as elevated sensitivity to data, and the difference of the clustering result from the intuitional decision. And also, this paper compares the effect of the proposed model and the result of FCM clustering algorithm through the experiment using real traffic and rainfall data. The experimental results indicate that the proposed model provides more reliable results by the sensitivity relief for data. And we can see that it has improved on the concordance of FCM clustering result with the intuitive expectation.

Feature-Point Extraction by Dynamic Linking Model bas Wavelets and Fuzzy C-Means Clustering Algorithm (Gabor 웨이브렛과 FCM 군집화 알고리즘에 기반한 동적 연결모형에 의한 얼굴표정에서 특징점 추출)

  • 신영숙
    • Korean Journal of Cognitive Science
    • /
    • v.14 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • This Paper extracts the edge of main components of face with Gator wavelets transformation in facial expression images. FCM(Fuzzy C-Means) clustering algorithm then extracts the representative feature points of low dimensionality from the edge extracted in neutral face. The feature-points of the neutral face is used as a template to extract the feature-points of facial expression images. To match point to Point feature points on an expression face against each feature point on a neutral face, it consists of two steps using a dynamic linking model, which are called the coarse mapping and the fine mapping. This paper presents an automatic extraction of feature-points by dynamic linking model based on Gabor wavelets and fuzzy C-means(FCM) algorithm. The result of this study was applied to extract features automatically in facial expression recognition based on dimension[1].

  • PDF

An Improved Clustering Method with Cluster Density Independence

  • Yoo, Byeong-Hyeon;Kim, Wan-Woo;Heo, Gyeongyong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.12
    • /
    • pp.15-20
    • /
    • 2015
  • In this paper, we propose a modified fuzzy clustering algorithm which can overcome the center deviation due to the Euclidean distance commonly used in fuzzy clustering. Among fuzzy clustering methods, Fuzzy C-Means (FCM) is the most well-known clustering algorithm and has been widely applied to various problems successfully. In FCM, however, cluster centers tend leaning to high density clusters because the Euclidean distance measure forces high density cluster to make more contribution to clustering result. Proposed is an enhanced algorithm which modifies the objective function of FCM by adding a center-scattering term to make centers not to be close due to the cluster density. The proposed method converges more to real centers with small number of iterations compared to FCM. All the strengths can be verified with experimental results.