• 제목/요약/키워드: FCM(Fuzzy C_Means)

검색결과 234건 처리시간 0.029초

효율적인 실내 측위를 위한 최적화된 KNN/IFCM 알고리즘 (Optimized KNN/IFCM Algorithm for Efficient Indoor Location)

  • 이장재;송익호;김종화;이성로
    • 대한전자공학회논문지SP
    • /
    • 제48권2호
    • /
    • pp.125-133
    • /
    • 2011
  • WLAN 환경하에서 알고리즘 기반의 패턴 매칭을 위해 training 단계에서는 여러 개의 AP에서 신호 잡음비의 특성값을 데이터베이스에 만들어 활용하고 estimation 단계에서는 단말기(MU)의 2차원 좌표값을 단말기로부터 새롭게 얻은 SNR과 데이터베이스에 저장된 fingerprint을 비교함으로써 추정한다. Fingerprinting 방식에서 KNN은 WLAN 기반 실내 측위에 가장 많이 적용되고 있지만 KNN의 성능은 k 개의 이웃 수와 RP의 수에 따라 민감하다. 논문에서는 KNN 성능을 향상시키기 위해 PFCM 군집화를 적용한 KNN과 PFCM을 혼합한 알고리즘을 제안하였다. 제안한 알고리즘은 신호잡음비 데이터를 KNN 방법에 적용하여 k개의 RP을 선택한 후 선택된 RP의 신호잡음비를 PFCM에 적용하여 k개의 RP를 군집하여 분류한다. 실험 결과에서는 위치 오차가 2m 이내에서 KNN/IFCM 알고리즘이 KNN, KNN/FCM, KNN/PFCM 알고리즘보다 성능이 우수하다.

지역적 엔트로피 기반 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 Multi-Level Thresholding (Multi-level Thresholding using Fuzzy Clustering Algorithm in Local Entropy-based Transition Region)

  • 오준택;김보람;김욱현
    • 정보처리학회논문지B
    • /
    • 제12B권5호
    • /
    • pp.587-594
    • /
    • 2005
  • 본 논문은 전이 영역에서 퍼지 클러스터링 알고리즘을 이용한 multi-level thresholding 방법을 제안한다. 대부분의 임계치 기반 영상 분할은 영상의 히스토 그램 분포를 기반으로 임계치를 결정한다. 그러므로 많은 처리시간과 기억공간을 요구할 뿐만 아니라 복잡하고 무분별한 히스토 그램 분포를 가지는 실영상에서의 임계치 결정에는 어려움이 있다. 본 논문에서는 영상의 대표적인 성분들로 구성된 전이 영역을 추출한 후 퍼지 클러스터링 알고리즘에 의해 최적의 임계치를 결정한다. 전이 영역을 추출하기 위해 이용되는 지역적 엔트로피는 잡음에 강건하며 영상에 내재된 정보를 잘 표현한다는 특성을 가진다. 그리고 퍼지 클러스터링 알고리즘은 복잡하고 무분별한 분포의 실영상에 대해서도 정확히 임계치를 설정할 수 있으며 multi-level thresholding으로 쉽게 확장이 가능하다. 다양한 실영상을 대상으로 실험한 결과, 제안한 방법이 기존의 방법보다 향상된 성능을 가짐을 보였다.

Comparison between Possibilistic c-Means (PCM) and Artificial Neural Network (ANN) Classification Algorithms in Land use/ Land cover Classification

  • Ganbold, Ganchimeg;Chasia, Stanley
    • International Journal of Knowledge Content Development & Technology
    • /
    • 제7권1호
    • /
    • pp.57-78
    • /
    • 2017
  • There are several statistical classification algorithms available for land use/land cover classification. However, each has a certain bias or compromise. Some methods like the parallel piped approach in supervised classification, cannot classify continuous regions within a feature. On the other hand, while unsupervised classification method takes maximum advantage of spectral variability in an image, the maximally separable clusters in spectral space may not do much for our perception of important classes in a given study area. In this research, the output of an ANN algorithm was compared with the Possibilistic c-Means an improvement of the fuzzy c-Means on both moderate resolutions Landsat8 and a high resolution Formosat 2 images. The Formosat 2 image comes with an 8m spectral resolution on the multispectral data. This multispectral image data was resampled to 10m in order to maintain a uniform ratio of 1:3 against Landsat 8 image. Six classes were chosen for analysis including: Dense forest, eucalyptus, water, grassland, wheat and riverine sand. Using a standard false color composite (FCC), the six features reflected differently in the infrared region with wheat producing the brightest pixel values. Signature collection per class was therefore easily obtained for all classifications. The output of both ANN and FCM, were analyzed separately for accuracy and an error matrix generated to assess the quality and accuracy of the classification algorithms. When you compare the results of the two methods on a per-class-basis, ANN had a crisper output compared to PCM which yielded clusters with pixels especially on the moderate resolution Landsat 8 imagery.

Face Detection for Automatic Avatar Creation by using Deformable Template and GA

  • Park, Tae-Young;Lee, Ja-Yong;Kang, Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1534-1538
    • /
    • 2005
  • In this paper, we propose a method to detect contours of a face, eyes, and a mouth of a person in the color image in order to make an avatar automatically. First, we use the HSI color model to exclude the effect of various light conditions, and find skin regions in the input image by using the skin color defined on HS-plane. And then, we use deformable templates and genetic algorithm (GA) to detect contours of a face, eyes, and a mouth. Deformable templates consist of B-spline curves and control point vectors. Those represent various shapes of a face, eyes and a mouth. GA is a very useful search algorithm based on the principals of natural selection and genetics. Second, the avatar is automatically created by using GA-detected contours and Fuzzy C-Means clustering (FCM). FCM is used to reduce the number of face colors. In result, we could create avatars which look like handmade caricatures representing user's identity. Our approach differs from those generated by existing methods.

  • PDF

Optimization Driven MapReduce Framework for Indexing and Retrieval of Big Data

  • Abdalla, Hemn Barzan;Ahmed, Awder Mohammed;Al Sibahee, Mustafa A.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권5호
    • /
    • pp.1886-1908
    • /
    • 2020
  • With the technical advances, the amount of big data is increasing day-by-day such that the traditional software tools face a burden in handling them. Additionally, the presence of the imbalance data in big data is a massive concern to the research industry. In order to assure the effective management of big data and to deal with the imbalanced data, this paper proposes a new indexing algorithm for retrieving big data in the MapReduce framework. In mappers, the data clustering is done based on the Sparse Fuzzy-c-means (Sparse FCM) algorithm. The reducer combines the clusters generated by the mapper and again performs data clustering with the Sparse FCM algorithm. The two-level query matching is performed for determining the requested data. The first level query matching is performed for determining the cluster, and the second level query matching is done for accessing the requested data. The ranking of data is performed using the proposed Monarch chaotic whale optimization algorithm (M-CWOA), which is designed by combining Monarch butterfly optimization (MBO) [22] and chaotic whale optimization algorithm (CWOA) [21]. Here, the Parametric Enabled-Similarity Measure (PESM) is adapted for matching the similarities between two datasets. The proposed M-CWOA outperformed other methods with maximal precision of 0.9237, recall of 0.9371, F1-score of 0.9223, respectively.

가우시안 가중치를 이용한 비선형 블라인드 채널등화를 위한 MFCM의 성능개선 (Performance Improvement on MFCM for Nonlinear Blind Channel Equalization Using Gaussian Weights)

  • 한수환;박성대;우영운
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.407-412
    • /
    • 2007
  • 본 논문에서는 비선형 블라인드 채널등화기의 구현을 위하여 가우시안 가중치(gaussian weights)를 이용한 개선된 퍼지 클러스터(Modified Fuzzy C-Means with Gaussian Weights: MFCM_GW) 알고리즘을 제안한다. 제안된 알고리즘은 기존 FCM 알고리즘의 유클리디언 거리(Euclidean distance) 값 대신 Bayesian Likelihood 목적함수(fitness function)와 가우시안 가중치가 적용된 멤버쉽 매트릭스(partition matrix)를 이용하여, 비선형 채널의 출력으로 수신된 데이터들로부터 최적의 채널 출력 상태 값(optimal channel output states)들을 직접 추정한다. 이렇게 추정된 채널 출력 상태 값들로 비선형 채널의 이상적 채널 상태(desired channel states) 벡터들을 구성하고, 이를 Radial Basis Function(RBF) 등화기의 중심(center)으로 활용함으로써 송신된 데이터 심볼을 찾아낸다. 실험에서는 무작위 이진 신호에 가우시안 잡음이 추가된 데이터를 사용하여 기존의 Simplex Genetic Algorithm(GA), 하이브리드 형태의 GASA(GA merged with simulated annealing (SA)), 그리고 과거에 발표되었던 MFCM 등과 그 성능을 비교 분석하였으며, 가우시안 가중치가 적용된 MFCM_GW를 이용한 채널등화기가 상대적으로 정확도와 속도 면에서 우수함을 보였다.

  • PDF

A Novel Whale Optimized TGV-FCMS Segmentation with Modified LSTM Classification for Endometrium Cancer Prediction

  • T. Satya Kiranmai;P.V.Lakshmi
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.53-64
    • /
    • 2023
  • Early detection of endometrial carcinoma in uterus is essential for effective treatment. Endometrial carcinoma is the worst kind of endometrium cancer among the others since it is considerably more likely to affect the additional parts of the body if not detected and treated early. Non-invasive medical computer vision, also known as medical image processing, is becoming increasingly essential in the clinical diagnosis of various diseases. Such techniques provide a tool for automatic image processing, allowing for an accurate and timely assessment of the lesion. One of the most difficult aspects of developing an effective automatic categorization system is the absence of huge datasets. Using image processing and deep learning, this article presented an artificial endometrium cancer diagnosis system. The processes in this study include gathering a dermoscopy images from the database, preprocessing, segmentation using hybrid Fuzzy C-Means (FCM) and optimizing the weights using the Whale Optimization Algorithm (WOA). The characteristics of the damaged endometrium cells are retrieved using the feature extraction approach after the Magnetic Resonance pictures have been segmented. The collected characteristics are classified using a deep learning-based methodology called Long Short-Term Memory (LSTM) and Bi-directional LSTM classifiers. After using the publicly accessible data set, suggested classifiers obtain an accuracy of 97% and segmentation accuracy of 93%.

컴퓨터 바이러스 분류를 위한 퍼지 클러스터 기반 진단시스템 (Fuzzy Cluster Based Diagnosis System for Classifying Computer Viruses)

  • 이현숙
    • 정보처리학회논문지B
    • /
    • 제14B권1호
    • /
    • pp.59-64
    • /
    • 2007
  • 중요한 정보를 저장하고 있는 컴퓨터를 위협하는 바이러스는 점점 현실적인 문제로 대두되고 있다. 이를 위하여 바이러스 침입 발견을 위한 소프트웨어 기술 또한 계속 발전되고 있으나, 현재까지의 표준 기술은 알려진 바이러스의 시그내쳐 패턴을 저장하여 이를 매치 검색하면서 바이러스를 찾아내는 방식을 채택하고 있다. 이는 알려진 바이러스에 대해서는 효과적이지만 새로운 바이러스를 찾아내지 못하고 손실을 당한 후 에야 찾을 수 있는 단점을 가지고 있다. 이를 위하여 바이러스 정보 구축과 탐색에 학습기능을 도입함으로 새로 발생하는 바이러스를 찾아내어 대처할 수 있는 방법이 필요하다. 본 논문에서는 컴퓨터 바이러스를 위한 퍼지 진단 시스템 FDS를 제안한다. FDS에서는 FCM 알고리즘을 사용하여 알려진 정보의 클러스터를 형성하고 대표정보를 추출하고 여기에 전문가의 지식을 포함하는 지식베이스를 구축한다. 진단을 위한 컴퓨터 파일에 대하여 그 파일의 결정 상태를 확인하고 이미 저장된 지식베이스를 바탕으로 바이러스 침입에 대한 정보를 보고하도록 설계되어있다. 이 시스템은 이미 알려진 테스트 데이터와 이전에 알려지지 않은 새로운 테스트 데이터를 실험데이터로 준비하여 널리 알려진 분류 알고리즘-KNN, RF, SVM-과 함께 성능을 비교하였다. 제안된 시스템이 알려지지 않은 컴퓨터 바이러스를 효과적으로 진단할 수 있는 타당성을 보이고 있다.

Granular Bidirectional and Multidirectional Associative Memories: Towards a Collaborative Buildup of Granular Mappings

  • Pedrycz, Witold
    • Journal of Information Processing Systems
    • /
    • 제13권3호
    • /
    • pp.435-447
    • /
    • 2017
  • Associative and bidirectional associative memories are examples of associative structures studied intensively in the literature. The underlying idea is to realize associative mapping so that the recall processes (one-directional and bidirectional ones) are realized with minimal recall errors. Associative and fuzzy associative memories have been studied in numerous areas yielding efficient applications for image recall and enhancements and fuzzy controllers, which can be regarded as one-directional associative memories. In this study, we revisit and augment the concept of associative memories by offering some new design insights where the corresponding mappings are realized on the basis of a related collection of landmarks (prototypes) over which an associative mapping becomes spanned. In light of the bidirectional character of mappings, we have developed an augmentation of the existing fuzzy clustering (fuzzy c-means, FCM) in the form of a so-called collaborative fuzzy clustering. Here, an interaction in the formation of prototypes is optimized so that the bidirectional recall errors can be minimized. Furthermore, we generalized the mapping into its granular version in which numeric prototypes that are formed through the clustering process are made granular so that the quality of the recall can be quantified. We propose several scenarios in which the allocation of information granularity is aimed at the optimization of the characteristics of recalled results (information granules) that are quantified in terms of coverage and specificity. We also introduce various architectural augmentations of the associative structures.

퍼지 클러스터링을 이용한 심전도 신호의 라벨링에 관한 연구 (A Study on Labeling of ECG Signal using Fuzzy Clustering)

  • 공인욱;이정환;이상학;최석준;이명호
    • 대한의용생체공학회:학술대회논문집
    • /
    • 대한의용생체공학회 1996년도 추계학술대회
    • /
    • pp.118-121
    • /
    • 1996
  • This paper describes ECG signal labeling based on Fuzzy clustering, which is necessary at automated ECG diagnosis. The NPPA(Non parametric partitioning algorithm) compares the correlations of wave forms, which tends to recognize the same wave forms as different when the wave forms have a little morphological variation. We propose to apply Fuzzy clustering to ECG QRS Complex labeling, which prevents the errors to mistake by using If-then comparision. The process is divided into two parts. The first part is a parameters extraction process from ECG signal, which is composed of filtering, QRS detection by mapping to a phase space by time delay coordinates and generation of characteristic vectors. The second is fuzzy clustering by FCM(Fuzzy c-means), which is composed of a clustering, an assessment of cluster validity and labeling.

  • PDF