• Title/Summary/Keyword: FBG strain sensor

Search Result 169, Processing Time 0.032 seconds

FBG sensor system for condition monitoring of wind turbine blades (풍력터빈 블레이드 상태 감시용 광섬유격자 센서시스템)

  • Kim, Dae-Gil;Kim, Hyunjin;Song, Minho
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.8
    • /
    • pp.75-82
    • /
    • 2013
  • We propose a fiber grating sensor system for condition monitoring of large scale wind turbine blades. For the feasibility test of the proposed sensor system, a down-scaled wind turbine has been constructed and experimented. Fiber grating sensors were attached on a blade surface for distributed strain and temperature measurements. An optical rotary joint was used to transmit optical signals between the FBG sensor array and the signal processing unit. Instead of broadband light source, we used a wavelength-swept fiber laser to obtain high output power density. A spectrometer demodulation is used to alleviate the nonlinear wavelength tuning problem of the laser source. With the proposed sensor system we could measure dynamic strain and temperature profiles at multi-positions of rotating wind turbine blades.

Signal Characteristics of Fiber Brags Grating due to Internal Strain Gradient (광섬유 브래그 격자의 내부 변형률 구배로 인한 신호 특성)

  • 강동훈;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.15 no.4
    • /
    • pp.32-36
    • /
    • 2002
  • Recently, the applications of composite materials become broader to civil engineering as well as mechanics and aerospace engineering. Cracks on the civil structures like bridges can cause stress concentration, which induces Peak splitting of fiber Bragg grating sensor and it makes strain measurements difficult. In this study, 4-point bending test of concrete beam with initial crack reinforced by composite patch was conducted in order to verify the effects of the stress concentration on the peak signal of FBG sensor and a novel method for signal maintenance.

Fatigue performance monitoring of full-scale PPC beams by using the FBG sensors

  • Wang, Licheng;Han, Jigang;Song, Yupu
    • Smart Structures and Systems
    • /
    • v.13 no.6
    • /
    • pp.943-957
    • /
    • 2014
  • When subjected to fatigue loading, the main failure mode of partially prestressed concrete (PPC) structure is the fatigue fracture of tensile reinforcement. Therefore, monitoring and evaluation of the steel stresses/strains in the structure are essential issues for structural design and healthy assessment. The current study experimentally investigates the possibility of using fiber Bragg grating (FBG) sensors to measure the steel strains in PPC beams in the process of fatigue loading. Six full-scale post-tensioned PPC beams were exposed to fatigue loading. Within the beams, the FBG and resistance strain gauge (RSG) sensors were independently bonded onto the surface of tensile reinforcements. A good agreement was found between the recorded results from the two different sensors. Moreover, FBG sensors show relatively good resistance to fatigue loading compared with RSG sensors, indicating that FBG sensors possess the capability for long-term health monitoring of the tensile reinforcement in PPC structures. Apart from the above findings, it can also be found that during the fatigue loading, there is stress redistribution between prestressed and non-prestressed reinforcements, and the residual strain emerges in the non-prestressed reinforcement. This phenomenon can bring about an increase of the steel stress in the non-prestressed reinforcement.

Monitoring of Early-age Behavior of Concrete Retaining Wall by FBG Sensors (FBG센서를 이용한 콘크리트옹벽 초기재령 특성 모니터링 연구)

  • Jang, Il-Young;Yun, Ying-Wei;Kim, Young-Gune
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.89-90
    • /
    • 2009
  • FBG temperature sensor and strain sensor has been used to monitoring shrinkage and temperature of concrete retaining wall in construction site in its casting early age. The test results indicate that this monitoring method is a practical method for monitoring concrete at very early age. The monitoring technique used in this research could be extended to monitor shrinkage and temperature for mass concrete structure.

  • PDF

Applications of Fiber Bragg Grating Sensor Technology (FBG 센서 기술의 응용 사례)

  • Kang Dong-Hoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.3-9
    • /
    • 2006
  • Among many fabrication methods of composite materials, filament winding is the most effective method for fabricating axis-symmetric structures such as pressure tanks and pipes. Filament wound pressure tanks are under high internal pressure during the operation and it has the complexity in damage mechanisms and failure modes. Fiber optic sensors, especially FBG sensors can be easily embedded into the composite structures contrary to conventional electric strain gages (ESGs). In addition, many FBG sensors can be multiplexed in single optical fiber using wavelength division multiplexing (WDM) techniques. In this paper, we fabricated several filament wound pressure tanks with embedded FBG sensors and conducted some kinds of experiments such as an impact test, a bending test, and a thermal cycling test. From the experimental results, it was successfully demonstrated that FBG sensors are very appropriate to composite structures fabricated by filament winding process even though they are embedded into composites by multiplexing.

  • PDF

Development of Embedding Methods of Fiber Bragg Grating Sensor under Consideration of Strain Transfer (변형률 전달성을 고려한 광섬유 브래그 격자 센서의 삽입 적용 기법 개발)

  • 강동훈;강현규;김대현;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.32-37
    • /
    • 2001
  • It is known that recoating or protection with glass-tube can prevent FBG sensor from being affected by birefringence. However, the effect on the strain transfer of such treatment has not been verified yet. Three types (uncoated, recoated and glass-tube protection) of FBG sensors are fabricated to verify the effect on the strain transfer of each treatment. The strain from each sensor embedded into a graphite/epoxy composite specimen was compared with that of ESG attached on the surface through the tensile test. And the signal characteristics of each sensor were also compared using the tensile test of a tapered aluminum specimen which was under the state of strain gradient.

  • PDF

Fixation Method of Prestressed Fiber Optic Sensor (광섬유센서의 프리스트레인 부가 고정방식)

  • Kim, Ki-Soo
    • Composites Research
    • /
    • v.25 no.6
    • /
    • pp.211-216
    • /
    • 2012
  • FBG sensor peaks could be split due to polarization by shear strain, when the fiber optic sensors embedded or attached to the structure. For the fiber optic sensor packages, sensor grating has to be protected from shear strains. Also, pretension has to be applied to the sensor because compressive strain must be measured. Without pretension of sensor, the sensor does not show any change of signal until it is stretched. In order to mesure compressive and tensile strains, two fixing point and prestressed sensor need. In the fixing point, just holding the optical fiber cause slip between core and cladding in the fiber. A Fixation method of prestressed FBG sensors fixed with partially stripped fibers was developed. The sensor package has the prestress controllable fixtures at the fixing points. Prestress to the sensor imposed by controlling the two fixed points with bolts and nuts make it easy to measure compressive strain as well as tensile strain. The fiber optic sensor packages applied to the actual structure and the structural monitoring system using the package can be applied to safety through surveillance.

Development of Smart Seismic Device Using FBG Sensor for Measuring Vertical Load (수직하중 계측을 위한 FBG센서 기반 스마트 교량 내진장치의 개발)

  • Chang, Sung-Jin;Kim, Nam-Sik;Baek, Joon-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1089-1098
    • /
    • 2012
  • A faulting could be occurred at the end of deck by unexpected loads to bridge bearing after a bridge completion. Serviceability of bridges could be impaired by the faulting which is caused structural damage. Therefore, smart bridge bearing which can continuously observe the supporting points is needed. Some of bridge bearings have been developed for measuring vertical load and vertical displacement by installing sensors in the bearing. In those systems, however it is not easy to be replaced with new sensors when repairs are needed. In this study, the smart bridge bearing of which sensors can be replaced has been developed to overcome such a problem. In this study, strain signals were used for measuring both of vertical displacements and loads. FBG sensors(fiber optic Bragg-grating sensors) have been used for measurement of the strain signals since it is prevented from electronic noise by mediating light, enables the simplification of the measuring cable by multiple measurement, and is easy to place by lightweight and small size. The possibility of use was reviewed for smart bridge bearing based on FBG sensors through tests.

Load Transfer Characteristics of the 7-wire strand using FBG Sensor Embedded Smart Tendon (FBG센서가 내장된 스마트 텐던을 이용한 7연 강연선의 인발 하중전이 특성)

  • Kim, Young-Sang;Suh, Dong-Nam;Kim, Jae-Min;Sung, Hyun-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.5
    • /
    • pp.79-86
    • /
    • 2009
  • With the substantial increase of the size of structure, the management of excavation becomes more difficult. Therefore, massive collapses which are related to retaining wall recently increase. However, since the study on measuring and monitoring the pre-stressing force of anchor is insufficient, behavior of anchor may not be predicted and monitored appropriately by the existing strain gauge and load cell type monitoring system. FBG Sensor, which is smaller than strain gauge and has better durability and does not have a noise from electromagnetic waves, is adapted to measure the strain and pre-stressing force of 7-wire strand, so called smart tendon. A series of pullout tests were performed to verify the feasibility of smart tendon and find out the load transfer mechanism around the steel wire tendon fixed to rock with grout. Distribution of measured strains and estimated shear stresses are compared with those predicted by theoretical solutions. It was found that developed smart tendon can be used effectively for measuring strain of 7-wire strand anchor and theoretical solutions underestimate the magnitude of shear stress and load transfer depth.

Monitoring of Early-age Behavior of concrete cable-stayed girder bridge by FBG sensors (FBG 센서를 이용한 사장교 초기재령 특성 모니터링 연구)

  • Jang, Il-Young;Park, Seung-Min;Kim, Seong-Kyum;Yang, Jae-Yeol;Park, Joon-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.105-106
    • /
    • 2010
  • FBG temperature sensor and strain sensor has been used to monitoring shrinkage and temperature of concrete cable-stayed girder bridge site in its casting early age, The monitoring method using this study is expected to used a practical method.

  • PDF