• Title/Summary/Keyword: FBG 변형률센서

Search Result 81, Processing Time 0.027 seconds

Estimation Models for Strain Distribution of Steel Beams using FBG Sensors (FBG 센서를 이용한 철골 보의 변형률 분포 추정 모델)

  • Oh, Byung-Kwan;Park, Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.704-707
    • /
    • 2010
  • 구조 건전성 모니터링에 사용되는 기존 센서들의 문제점을 극복하고 높은 분해능과 동특성 모니터링에 대한 이점을 지닌 FBG센서는 구조물 모니터링에 있어 큰 이점을 지니고 있다. FBG 센서는 점 센서라는 한계 때문에 구조물의 전체적인 변형률 및 응력 평가에 어려움이 있을 수 있다. 본 연구에서는 FBG 센서로부터 계측한 변형률 값들로부터 임의의 하중조건에서 철골 보의 변형률 분포를 추정하는 기법을 제시하였다. 임의의 개별 하중조건에 대해 FBG 센서로 계측된 값을 통해 센서의 부착 위치와 최소 필요 개수를 결정하고 변형률 추정식을 유도함으로써 FBG 센서의 계측 기법에 대한 기준을 세웠다. 나아가 임의의 조합 하중이 작용하는 실제의 경우를 고려하여 철골 보의 변형률 분포를 추정하는 보다 일반화된 수학적 모델을 제시하였다. 그리고 예제를 통하여 본 연구에서 제시한 변형률 분포 추정 모델을 검증하였다.

  • PDF

Fabrication of a Temperature-Compensating FBB Sensor for Measurement of Mechanical Strain (온도 보상형 Double FBG센서의 제작과 기계적 변형률 측정시험)

  • Jung, Dal-Woo;Kwon, Il-Bum;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.356-361
    • /
    • 2005
  • A temperature-compensating double fiber Bragg grating(FBG) sensor having two different FBGs in one fiber line was proposed for real time measurement of mechanical normal strain in structures. Measurement of mechanical strains of the aluminum beam surface by the double FBG sensor was performed under various thermal conditions, and the results were compared with those of electrical resistance strain gage. The FBG sensor fabricated in this study was able to measure accurately the mechanical strains without containing any thermal strain component.

Temperature Compensation Technique for Steel Sleeve Packaged FBG Strain Sensor and Its Application in Structural Monitoring

  • Yun, Ying-Wei;Jang, Il-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.1-5
    • /
    • 2008
  • As bare Fiber Bragg Grating (FBG) sensors are very fragile, bare FBG without encapsulation is not properly applied in practical infrastructures directly due to the harsh environment in practical engineering. Steel sleeve packaged FBG strain sensor is widely used in civil engineering. Since FBG senses both strain and temperature simultaneously, for accurate measurement of strain, temperature compensation for FBG strain sensors is indispensable. In this paper, based on the FBG's strain and temperature sensing principles, the temperature compensation techniques for steel sleeve packaged FBG sensors are brought forward. And the experiment of concrete early-age shrinkage monitoring by dual FBG sensors is carried out to test the feasibility of the temperature compensation technique.

The Signal Characteristics of Reflected Spectra of Fiber Bragg Grating Sensors with Strain Gradient and Grating Lengths (변형률 구배와 격자 길이에 따른 광섬유 브래그 격자 센서의 신호 특성 연구)

  • Kang, Dong-Hoon;Park, Sang-Oh;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.32-38
    • /
    • 2005
  • FBG sensors have been studied more actively than any other fiber optic sensor because of good multiplexing capabilities among many fiber optic sensors. The demodulation method of FBG sensors is based on the detection of wavelength shift of their sensor peaks and properties such as strain and temperature can be measured by detecting them. However, the signal stability of FBG sensors can be influenced by the strain gradient induced by structural geometry or cracks on the surface when FBG sensors are embedded into or attached on the structure. In this study, the signal characteristics of reflected spectra of FBG sensors under strain gradient were verified and the relations between the grating length of FBG sensors and the amount of strain gradient were investigated. From the experimental results, the recommended working range of FBG sensors under strain gradients was shown quantitatively with respect to grating lengths of them.

Residual Strain Characteristics of Nickel-coated FBG Sensors (니켈이 코팅된 FBG 센서의 잔류 변형률 특성)

  • Cho, Won-Jae;Hwang, A-Reum;Kim, Sang-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.613-620
    • /
    • 2017
  • A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately $43{\mu}m$ of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

Strain Measurement of Steel Roof Truss Using FBG Sensor during Construction of Reverse Shell Shaped Reinforced Concrete Structure (FBG 센서를 이용한 철근 콘크리트 역쉘구조물의 시공 중 건전성 관리를 위한 지붕철골트러스 변형률 계측)

  • Lee, Kun-Woo;Rhim, Hong-Chul;Seo, Tae-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.335-342
    • /
    • 2011
  • Application of FBG (Fiber Bragg Grating) sensors to measure strain of steel roof trusses has been performed. This is to check and confirm the structural integrity of an unusually shaped, reverse shell structure made of reinforced concrete. The issue was to place sensors at proper location and compare the measured values to the results from structural analysis. It has been learned that a deliberate measurement scheme is needed in order to monitor a complex structure during construction. In this study, the measured values were within allowable range of strain, thus confirming the safety of the structure during measurement and construction.

Static Behavior of Hollow Cantilever Beam Using Multiplexed FBG Sensors (다중화된 FBG센서를 이용한 중공 내민보의 정적 거동 분석)

  • Lee, Tae-Hee;Kang, Dong-Hoon;Chung, Won-Seok;Mok, Young-Jin
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.4
    • /
    • pp.316-322
    • /
    • 2009
  • This paper presents a preliminary study to monitor the lateral behavior of pile foundation using multiplexed fiber Bragg grating(FBG) sensors. In the Preliminary study, an 1.7 meter long cantilever beam with the shape of square hollow box was fabricated and tested under the static loading. Four FBG sensors were multiplexed in a single optical fiber and installed into the top and bottom of the cantilever beam. The strains are directly measured from FBG sensors followed by curvature calculations based on the plane section assumption. Vertical deflections are then estimated using the regression analyses based on the geometric relationships. It has been found that excellent correlation with conventional sensing system was observed. The success of the test encourages the use of the FBG sensing system as a monitoring system for pile foundations. However, further consideration should be given in the case of the sensor malfunction for the practical purpose.

Temperature Compensation Technique for Steel Sleeve Packaged FBG Strain Sensor in Structural Monitoring (Steel Sleeve Packaged FBG 변형률센서를 이용한 구조물 모니터링에서의 온도보정 기술)

  • Jang, Il-Young;Yun, Ying-Wei;Ryu, Jeong-Su;Park, Jin-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.805-808
    • /
    • 2008
  • Due to the fact that bare FBG sensors are very fragile, bare FBG sensor is not properly applied in practical infrastructures as it is not suitable to the rudeness of construction. Therefore packaged FBG sensors are developed for construction application. Since FBG senses strain and temperature simultaneously, temperature compensation for FBG strain sensors is indispensable. In this paper, temperature compensation techniques for steel sleeve packaged FBG sensors are brought forward. And its application on monitoring concrete beam was carried to test the feasibility of the temperature compensation technique. Temperature compensation technique used in this paper is feasible to be extended to structure health monitoring in civil engineering especially in large infrastructures etc.

  • PDF

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Monitoring of Early-age Behavior of Concrete Retaining Wall by FBG Sensors (FBG센서를 이용한 콘크리트옹벽 초기재령 특성 모니터링 연구)

  • Jang, Il-Young;Yun, Ying-Wei;Kim, Young-Gune
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.89-90
    • /
    • 2009
  • FBG temperature sensor and strain sensor has been used to monitoring shrinkage and temperature of concrete retaining wall in construction site in its casting early age. The test results indicate that this monitoring method is a practical method for monitoring concrete at very early age. The monitoring technique used in this research could be extended to monitor shrinkage and temperature for mass concrete structure.

  • PDF