• Title/Summary/Keyword: FB (Full-Bridge)

Search Result 52, Processing Time 0.022 seconds

An Improved ZVZCS PWM FB DC/DC Converter Using the Modified Clamp Circuit (개선된 Clamp Circuit 적용 ZVZCS FB DC/DC 컨버터)

  • 김은수;조기연;김윤호;이진수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.643-645
    • /
    • 1999
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with the modified energy recovery snubber (ERS) attached at the secondary side of transforemr.

  • PDF

High Efficiency Operation of the IPT converter with Full and Half bridge Control for Electric Vehicles (전기자동차용 IPT 컨버터의 풀브릿지-하프브릿지 제어를 통한 고효율 운전 방법)

  • Ann, Sang-Joon;Joo, Dong-Myoung;Kim, Min-Kook;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.5
    • /
    • pp.423-430
    • /
    • 2017
  • This paper proposes a control methodology for a high efficiency operation of an inductive power transfer (IPT) converter by combining full bridge (FB) and half bridge (HB) controls. To apply the proposed control to the IPT converter, the characteristics of each control method are analyzed. By examining the output voltages of the IPT converter and a theoretical loss analysis, the control shifting points between FB and HB controls are evaluated in accordance with the coupling coefficients and the load. Based on the control shifting points, the FB-HB control algorithm is implemented. By applying FB-HB control, high efficiency operation at the light load condition can be achieved.

A Design of Driving Circuit for Microwave oven using Phase-shifted FB-ZVS PWM Switching (Phase-shifted FB-ZVS PWM 스위칭을 이용한 Micorwave oven 구동회로 설계)

  • 이완윤;정교범;신판석
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.3
    • /
    • pp.265-272
    • /
    • 2001
  • The traditional 60[Hz] power supply for during magnetron in microwave oven has disadvantages of heavy weight and low efficiency due to 60[Hz] High Voltage Transformer(HVT), capacitor and th phase control of thyristors. To alleviate these disadvantages, this paper proposes a 20[kHz] phase-shifted Full-Bridge(FB) Zero-Voltage-Switched(ZVS) PWM converter for driving a 600[W] magnetron in an 1[kW] microwave oven. The proposed converter has advantages of light weight and high power density.

  • PDF

DC Bias Control of High Frequency Transformer in High Power FB DC/DC Converter (대용량 FB DC/DC 컨버터에 있어서 고주파변압기 편 여자 현상 및 제어)

  • 김태진
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.45-48
    • /
    • 2000
  • By the use of he DSP and microprocessor controller many high power converter such as especially inverter and motor drive system may be enhanced resulting in the improved robustness of EMI the ability to communicate the operating conditions and the ease of adjusting the control parameters. However the digital controller using DSP or microprocessor has not been applied in the high frequency switching power supplies especially in full bridge dc/dc converters. this paper presents a promising solution to the dc bias control problem of high frequency transformer in high power full bridge converter.

  • PDF

An auxiliary circuit for reducing loss during free-wheeling interval in FB ZVT PWM converter (FB ZVT PWM 컨버터의 환류구간 손실저감을 위한 보조회로)

  • 윤창선;김병철;김광헌
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.3
    • /
    • pp.209-214
    • /
    • 2000
  • In this paper, we propose a FB ZVT(full bridge zero voltage transition) PWM OC~OC converter which uses a a saturable reactor, instead of two additional switches, to achieve zero voltage switching. The conventional h high frequency phase shifted FB ZVT PWM OC-OC converter has a disadvantage that a circulating current f flows through high frequency transformer and switching devices during the free-wheeling interval. Due to this c circulating current, conduction loss increases. In order to reduce such the loss as this, we propose circuit of r reducing conduction loss at the secondary side of transformer. The operation principles are explained in detail a and the several interesting simulations and experimental results verify the validity of the proposed circuit.

  • PDF

Power Control Method for FB-SRC IH Cooktop System Considering Limited Switching Frequency Range Condition (가용 동작 주파수 범위를 고려한 FB-SRC 기반 IH 쿡탑 시스템의 전력 제어 방안)

  • Hwang, Yun-Seong;Lee, Joo-Seung;Kang, Seung-Hyun;Kwon, Man-Jae;Jang, Eunsu;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.256-264
    • /
    • 2022
  • The frequency power control method (FCM) which has a wide operating frequency range is adopted for induction heating (IH) cooktops. When FCM is applied to the full-bridge series resonant converter (FB-SRC) based IH system, high-frequency switching of the inverter is required compared to the half-bridge SRC (HB-SRC)-based IH system. Therefore, the switching loss of the inverter increases, and applying FCM under the condition that the inverter operating frequency range is limited is difficult. Therefore, this paper proposes a control strategy with the phase shift power control method considering that limited frequency conditions are presented. Loss analysis following the control method is performed through simulation and mathematical analysis. In addition, the validity of the proposed control strategy is verified by analyzing the heating performance following the control method through the test results of the 3,200[W] prototype.

Zero Voltage and Zero Current Switching Full Bridge DC-DC Converter Using Novel Secondary Active Clamp (새로운 2차측 능동 클램프회로의 영전압 영전류 스위칭 Full Bridge DC-DC 컨버터)

  • Kim, Byung-Chul;Kim, Hyung-Gon;Kim, Kwang-Heon
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.13-15
    • /
    • 1999
  • The zero voltage and zero current switching(ZVZCS) full bridge (FB) PWM converter using secondary active clamp is characterized by high efficiency, good ZVZCS characteristic, simple topology and low cost. But at the period for discharge of the secondary clamp capacitor, peak pulses and ringing pulse occur in rectified secondary side of the converter. In this paper, a novel secondary active clamp circuit for the ZVZCS FB PWM converter is proposed and a 50 kHz, 500 W prototype converter was experimented for verification of the converter characteristics. It was verified that high voltage peak pulses and ringing pulse on secondary rectified waveforms of the converter are decreased effectively.

  • PDF

Digital-To-Phase-Shift PWM Circuit for High Power ZVS Full Bridge DC/DC Converter (대용랑 ZVS Full Bridge DC/DC 컨버터에 있어서 Digital-To-Phase Shift PWM 발생회로)

  • Kim, Eun-Su;Kim, Tae-Jin;Byeon, Yeong-Bok;Park, Sun-Gu;Kim, Yun-Ho;Lee, Jae-Hak
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.1
    • /
    • pp.54-61
    • /
    • 2000
  • Conventionally, ZVS FB DC/DC converter was controlled by monolithic IC UC3879, which includes the functions of oscillator, error amplifier and phase-shift circuit. Also, microprocessor and DSP have been widely used for the remote control and for the immediate waveform control in ZVS FB DC/DC converter. However the conventional microprocessor controller is complex and difficult to control because the controller consists of analog and digital parts. In the case of the control of FB DC/DC converter, the output is required of driving a direct signal to the switch drive circuits by the digital controller. So, this paper presents the method and realization of designing the digital-to-phase shift PWM circuit controlled by DSP (TMX320C32) in a 2,500A, 40㎾ ZVS FB DC/DC converter.

  • PDF

Novel soft switching FB DC-DC converter (새로운 소프트 스위칭 FB DC-DC 컨버터)

  • 김은수;최해영;조기연;계문호;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.251-255
    • /
    • 1997
  • The conventional high frequency phase-shifted full bridge dc/dc converter has a disadvantage that a circulating current flows through transformer and switching devices during the freewheeling interval. Due to this circulating current, RMS current stress, conduction losses of transformer and switching devices are increased. To alleviate this problem, this paper provides a circulating current free type high frequency soft switching phase-shifted full bridge (FB) dc/dc converter with energy recovery snubber (ERS) attached at the secondary side of transformer. The energy recovery snubber (ERS) adopted in this study is consisted of three fast recovery diode(Ds1, DS2, Ds3), two resonant capacitor (Cs1, Cs2)

  • PDF

Zero-Current-Switching in Full-Bridge DC-DC Converters Based on Activity Auxiliary Circuit

  • Chu, Enhui;Lu, Ping;Xu, Chang;Bao, Jianqun
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.353-362
    • /
    • 2019
  • To address the problem of circulating current loss in the traditional zero-current switching (ZCS) full-bridge (FB) DC/DC converter, a ZCS FB DC/DC converter topology and modulation strategy is proposed in this paper. The strategy can achieve ZCS turn on and zero-voltage and zero-current switching (ZVZCS) turn off for the primary switches and realize ZVZCS turn on and zero-voltage switching (ZVS) turn off for the auxiliary switches. Moreover, its resonant circuit power is small. Compared with the traditional phase shift full-bridge converter, the new converter decreases circulating current loss and does not increase the current stress of the primary switches and the voltage stress of the rectifier diodes. The diodes turn off naturally when the current decreases to zero. Thus, neither reverse recovery current nor loss on diodes occurs. In this paper, we analyzed the operating principle, steady-state characteristics and soft-switching conditions and range of the converter in detail. A 740 V/1 kW, 100 kHz experimental prototype was established, verifying the effectiveness of the converter through experimental results.