• 제목/요약/키워드: FAN

검색결과 3,629건 처리시간 0.032초

멀티캐스트 교환기내 혼합 트래픽의 성능분석 (Blocking Probability of Hererogeneous Traffic in a Multicast Switch)

  • 김종권
    • 한국통신학회논문지
    • /
    • 제19권11호
    • /
    • pp.2215-2227
    • /
    • 1994
  • 단일 교환기로 다양한 유형을 효율적으로 지원할 수 잇는 멀티캐스트 교환기는 광대역 종합망의 성공적인 확산에 필요 불가결한 요소이다. 본 논문에서는 멀티캐스트 교환기에서 이질적 트래픽이 혼합된 환경을 가정하고 회선 에뮬레이션 트래픽의 성능을 분석하였다. 기존의 연구에서, 모든 호가 동일한 fan-out을 갖는 동질 트래픽 환경에서 fan out이 증가함에 따라 호 불통률이 급격히 증가하는 것이 관찰되었다. 본 논문에서는 fan-out이 서로 다른 호가 혼합된 이질 트래픽 환경에서는 fan-out에 따른 호 불통률 차이가 동절 트래픽 경우보다 오히려 증가하는 결과를 도출하였다. 이 결과는 멀티캐스트 교환기에서 멀티캐스트 호의 성능을 향상시키기 위한 효율적인 자원 할당 알고리듬을 사용해야 한다는 것을 지적하고 있다. 본 논문에서는 멀티캐스트 교환기의 성능을 향상시킬 수 있는 몇가지 방안을 제시하였다.

  • PDF

피치각 조정형 송풍-역풍 겸용 축류팬에서 배연용 피치각 선정을 위한 실험적 연구 (An Experimental Study on Selection Pitch Angle on backward flow of an Axial Fan with Adjustable Pitch Angle Blades)

  • 장택순;허진혁;문승재;이재헌
    • 플랜트 저널
    • /
    • 제5권1호
    • /
    • pp.45-50
    • /
    • 2009
  • In this study, the experimental study has carried out to select pitch angle on the backward flow in an axial fan that has adjustable pitch blades. With the change of pitch angle of axial fan with adjustable blade, air flow rate, pressure and air flow direction can be changed. Because of this merit, adjustable axial fan can be used in the backward flow. For the selection of the backward flow pitch angle, fan performance test method is selected by KS B 6311. Dynamic pressure, static pressure, electric current and voltage are measured in each pitch angles of axial fan that are $36^{\circ}$, $-16^{\circ}$, $-21^{\circ}$, $-26^{\circ}$, $-31^{\circ}$ and $-36^{\circ}$. In the result of test, fan performance curves at several pitch angle has been investigated. Finally, pitch angle of $-26^{\circ}$ has been selected to get largest flow rate at backward flow situation.

  • PDF

횡류팬 유로최적화를 위한 수치실험 (Numerical Experiments for the Optimization of the Flow Path through a Cross-Flow Fan)

  • 전용두;이종수
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.147-151
    • /
    • 2002
  • Cross flow fan system is widely used for various applications, especially for the air-moving device of heaters, air-conditioners, and air-curtains. Although there are efforts for the optimization of cross-flow fan flow path with different methods of approach, it is still being investigated by many researchers through experimentally and/or theoretically, because the flow pattern of the cross flow fan is not stereotyped. This paper presents some results from numerical experiments for the optimization of the flow path through a cross-flow fan to be applied to indoor wall-mounted room heater. Two dimensional analysis has been applied to a specific fan system including inlet and diffuser outlet. Flow characteristics art presented and discussed for two different flow path at three different operating conditions represented by rotational speed(800, 1,000, 1,200 rpm) of the In. According to the simulated results for the specific fan system under consideration, it could be found that the flow pattern resembles each other at different rotational speed (to say from 800 rpm to 1,200 rpm) for a fixed flow path, while the secondary flows mostly absorbs the speed effects. By changing the flow path significant increase in volume flow rate is estimated upto 2.65 at the same rotational speed. According to the present experience, fan flow path design can be performed more efficiently by incorporating this type of numerical experiments combined with the model tests.

  • PDF

허브 형상에 따른 정풍량 환기팬의 유동과 성능특성 (Flow Behavior and Performance Characteristics of Constant Air Volume Fan According to Different Hub Shape)

  • 이호호;최항철;정재구;이윤표;신유환;정진택
    • 한국유체기계학회 논문집
    • /
    • 제15권2호
    • /
    • pp.57-62
    • /
    • 2012
  • The constant air volume flow fan can maintain constant flow rate to the wide range of exit pressure. Therefore, the use of this fan is increasing recently for ventilation of high building. Brushless DC motor is adopted to this fan because that has advantages of compactness and performance. But this type of motor protrude from impeller hub side to fan inlet. The Impeller inlet flow is influenced by size of this obstacle called hub. In this paper, the influence of hub shape on the fan performance characteristics are experimentally and numerically analyzed. CFX 12.0 is used to perform the fan internal flow analysis and numerical results are compared with the experiments. Depending on hub shape, internal loss is generated and the performance and efficiency are reduced. The best performance is occurred around $h/b_1$ = 0.25. The results of this study will be contribute to initial design of constant air volume flow fan development.

전산실험모형을 이용한 자동차 엔진 냉각홴의 저소음 설계 (Design of Low Noise Engine Cooling Fan for Automobile using DACE Model)

  • 심현진;박상길;조용구;오재응
    • 한국소음진동공학회논문집
    • /
    • 제19권5호
    • /
    • pp.509-515
    • /
    • 2009
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the optimal design for noise reduction of the engine cooling fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

전산실험모형을 이용한 자동차 엔진 냉각팬의 저소음 설계 (Design of Low Noise Engine Cooling Fan for Automobile using DACE Model)

  • 심현진;이해진;이유엽;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.1307-1312
    • /
    • 2007
  • This paper proposes an optimal design scheme to reduce the noise of the engine cooling fan by adapting Kriging with two meta-heuristic techniques. An engineering model has been developed for the prediction of the noise spectrum of the engine cooling fan. The noise of the fan is expressed as the discrete frequency noise peaks at the BPF and its harmonics and line spectrum at the broad band by noise generation mechanisms. The object of this paper is to find the Optimal Design for Noise Reduction of the Engine Cooling Fan. We firstly show a comparison of the measured and calculated noise spectra of the fan for the validation of the noise prediction program. Orthogonal array is applied as design of experiments because it is suitable for Kriging. With these simulated data, we can estimate a correlation parameter of Kriging by solving the nonlinear problem with genetic algorithm and find an optimal level for the noise reduction of the cooling fan by optimizing Kriging estimates with simulated annealing. We notice that this optimal design scheme gives noticeable results. Therefore, an optimal design for the cooling fan is proposed by reducing the noise of its system.

  • PDF

레이저 3차원 진동측정기와 마이크로폰을 이용한 진공청소기용 팬모터의 실험적인 공력소음 분석 (The Experimental Analysis of Aerodynamic Sound for Fan Motor in a Vacuum Cleaner Using Laser 3-D Scanning Vibrometer and Microphone)

  • 곽이구;안재신;김재열
    • 한국정밀공학회지
    • /
    • 제22권3호
    • /
    • pp.46-51
    • /
    • 2005
  • The vacuum cleaner motor runs at very high speed for suction power. Specially, motor power is provided by the impeller being rotated at very high speed. The centrifugal fan consists of the impeller, the diffuser, and the circular casing. Due to the high rotating speed of the impeller and small gap distance between the impeller and the diffuser, the level of noise in the centrifugal fan is at BPF(Blade Passage Frequency) and its harmonic frequencies. In order to calculate the sound pressure of centrifugal fan, unsteady flow data are needed. The cause of noise is obtained by dividing the fluid noise by exhaust flow of fan and vibration noise by rotational vibration of vacuum cleaner fan motor. Until now, an accelerometer has been used to measure vibration. However, it can not measure vibration in some parts of brush and commutator because of motor construction and 3-D vibrating mode. This study was conducted to perform accurate analysis of vibration and aerodynamic sound for fan motor in a vacuum cleaner using a laser vibration analyzer. A silent fan motor can be designed using the data measured in this study.

원심형 보조날개를 부착한 축류홴의 유동특성에 관한 실험적 연구 (An Experimental Study on the Flow Characteristics of Axial Flow Fan with Centrifugal Sub-Blade)

  • 이석종;성재용;이명호
    • 한국지열·수열에너지학회논문집
    • /
    • 제9권3호
    • /
    • pp.19-25
    • /
    • 2013
  • A new type axial flow fan with centrifugal sub-blades has been designed and fabricated in the present study. We investigated velocity and pressure distributions in downstream flow fields of the fan experimentally to detect the detailed flow characteristics of new axial flow fan and an existing axial flow fan. Two-dimensional velocity components were probed by applying a particle image velocimetry system and pressure distributions were measured by Pitot tube and micro-manometer. Our results show that the velocity and pressure distributions at the flow fields of the new fan are quite different from the existing fan, and that the centrifugal sub-blades in the new fan can improve the performance characteristics in view of kinetic energy.

렌지후드의 성능개선을 위한 시로코 팬 주위의 유동해석 (PERFORMANCE IMPROVEMENT OF A RANGE HOOD SIROCCO FAN BY CFD FLOW ANALYSIS)

  • 한병윤;박진우;이명수;박형구
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 학술대회
    • /
    • pp.159-165
    • /
    • 2008
  • A sirocco fan is widely used for discharging pollutants of a kitchen space since it is able to generate a relatively high air flow rate considering its small size and makes less noise than a axial fan or a centrifugal fan. However, it has a problem because its efficiency is low, and power consumption is larger. Performance of a sirocco fan is influenced by various factors such as number of the fan blades, diameter of the fan, geometry of the fan, geometry of its housing, revolution frequency, static pressure condition, and etc. This research investigated the effect on the performance of geometry of the housing. For CFD analysis, we used a commercial code, SC/Tetra, and used a sliding mesh method to give the same condition as an actual state. Verification of the CFD results is done by comparison of experimental data and numerical one about the suction flow rate, and it is confirmed that two results are well consistent. After we changed the shape of housing according to Archimedes' screw, we observed that suction efficiency is improved by 10.7% maximum.

  • PDF

리어가이더 형상변화에 따른 횡류홴 성능해석 (Analysis of Performance of Cross-Flow Fan with Various Rear Guiders)

  • 김동원;이준환;박성관;김윤제
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2076-2082
    • /
    • 2003
  • A cross-flow fan is widely used on many industrial fields: mining industry, automobile and home appliances, etc. The design point of the cross-flow fan is generally based on the region within low static pressure and high flow rate. It relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice. However, it has low static pressure efficiency between 30% and 40% because of relative high impact loss. Recently, in the air-conditioning systems, the operating behaviors at the off-design points are highly regarded to broaden the application area for various air-cooling loads. Especially, at the lower flow rate, there exists a rapid pressure head reduction, a noise increase and an irregular flow field against a rearguider as a scroll of centrifugal fan. Numerical analyses are carried out for investigating the flow characteristics in a cross-flow fan including the impeller, the rearguider and the stabilizer. Especially, various types of rearguiders are estimated by numerical and experimental methods to insure the stable operation in the region of lower flow rate. Numerical domains are discretized by hexahedral cells. Three-dimensional, unsteady governing equations are solved using FVM, PISO algorithm, sliding grid system and standard ${\kappa}-{\varepsilon}$ turbulence model. ASHRAE standard fan tester is also used to estimate the performance of the modeled crossflow fan.

  • PDF