• Title/Summary/Keyword: FABP4

Search Result 85, Processing Time 0.02 seconds

Regulation of Chicken FABP4 Transcription by Toll-Like Receptor 3 Activation in DF-1 Cells

  • Jae Rung So;Sujung Kim;Ki-Duk Song
    • Korean Journal of Poultry Science
    • /
    • v.50 no.4
    • /
    • pp.283-291
    • /
    • 2023
  • Long-chain fatty acids (LCFAs) are vital in cellular compartments, primarily regulating lipid metabolism. Fatty Acid-Binding Proteins (FABPs) facilitate LCFA transport, lipid synthesis, storage, and act as signaling molecules influencing various pathways, including inflammation. FABP4, in particular, is linked to vascular and cardio-related diseases, and it plays a role in macrophage-mediated inflammatory responses. Previous studies have identified FABP4 as not only a representative biomarker for lipogenesis but also as having correlations with immune responses. This study aims to investigate the regulation of the chicken FABP4 (chFABP4) gene by toll-like receptor 3 (TLR3) activation and determine the signaling pathways that are involved in chFABP4 transcriptional regulation. We analyzed the transcriptional regulation of chFABP4 in TLR3-stimulated DF-1 cells. The results showed that chFABP4 was up-regulated upon stimulation with polyinosinic-polycytidylic acid (PIC), a TLR3 ligand. Notably, chFABP4 transcription was independently regulated in the NF-κB signaling pathway. It was up-regulated in p38 inhibition, demonstrating that the p38 signaling pathway might suppress the transcription of chFABP4 within TLR3-activated DF-1 cells. In contrast, chFABP4 expression was down-regulated in JNK signaling pathway inhibition, suggesting the positive regulation of JNK signaling pathway for chFABP4 transcription in DF-1 cells in response to TLR3 activation, consistent with findings in macrophages. MEK pathway inhibition resulted in a similar regulation to NF-κB signaling. These results suggest that each MAPK contributes differentially to the transcriptional regulation of chFABP4 by in DF-1 cells in response to TLR3 activation.

Investigation of SNPs in FABP3 and FABP4 Genes and Their Possible Relationships with Fatty Acid Composition in Broiler

  • Maharani, Dyah;Park, Hee-Bok;Jung, Yeon-Kook;Jung, Samooel;Jo, Cheo-Run;Lee, Jun-Heon
    • Korean Journal of Poultry Science
    • /
    • v.38 no.3
    • /
    • pp.231-237
    • /
    • 2011
  • There is limited information of the genetic effect for fatty acid composition in chicken meat. This study assessed the association of FABP3 and FABP4 genes affecting fatty acid composition in broilers. Two single nucleotide polymorphisms (SNPs) were detected in FABP3 gene and five SNPs were identified in FABP4 gene. The SNPs located in intron 1 and exon 1 of FABP3 and FABP4, respectively, were used for genotyping using PCR-RFLP method. The SNPg.285C >T in FABP4 showed suggestive association with high arachidonic acid (C20 : 4) in CT genotypes (P = 0.068). However, the SNP g.508C > T in FABP3 showed no significant associations with fatty acid composition. These results are the first report to investigate the SNPs in FABP3 and FABP4 genes and their associations with fatty acid composition, although we only found the possible association of FABP4 SNP with fatty acid composition. These results should provide valuable information for further investigation of the genes affecting fatty acid composition in chicken.

Association of Microsatellite Marker in FABP4,5 Gene with Marbling Score and Feeding and Management in Breed Hanwoo (번식한우 사양관리(비육전후)에 따른 지방산결합단백질 4, 5(FABP4, 5) 유전자와 육질의 연관성 분석)

  • Kim, Bong-Sun;Chang, Kil-Won;Lee, Seung-Hwan;Chung, Hak-Jae;Yang, Bo-Suk;Park, Jin-Ki;Kim, Min-Su;Lim, Seon-Hwa;Park, Chae-Won;Min, Kwan-Sik;Yang, Byoung-Chul
    • Reproductive and Developmental Biology
    • /
    • v.36 no.3
    • /
    • pp.183-188
    • /
    • 2012
  • The bovine fatty acid binding protein 4 and 5 (FABP4 and 5) is a major positional and physiological candidate gene for the bovine marbling and carcass weight. The aim of this study was to evaluate the association between economic traits of Korean cattle (Hanwoo) and genetic variation in fatty acid binding protein 4 and 5 (FABP4 and 5) genes within carcass/meat quality traits and the before/after of fatting in breed Hanwoo. Here, we characterized the nucleotide polymorphism of FABP4 and 5 in 86 cattle. We were detected the variability of three types (GG, AG, and AA) by PCR, and economic traits were analyzed by the mixed regression model implemented in the ASReml program. As the result of statistical and supersonic analysis, FABP4 gene was highly showed significant effect (p<0.006) on marbling score (MS), in contrast FABP5 gene was lowed (p<0.084) on MS before fatting. But, FABP4 gene was highly showed significant effect (p<0.0054) on MS, in contrast FABP5 gene lowest (p<0.0899) on MS in the after of fatting. Compare to supersonic result before fatting in FABP4 gene, it was detected type GG: (p<7.18), AG: (p<8.50), and AA: (p<10.50) (n=50), showed type GG: (p<4.88), AG: (p<2.33), and AA: (p<0.00) after weed out (n=20). Futhermore, it was detected type GG: (p<9.30), AG: (p<7.95), and AA: (p<7.40) (n=50) before fatting in the FABP5 gene. It was shown type GG: (p<2.67), AG: (p<3.50), and AA: (p<5.00) after weed out (n=50). Our results indicate that FABP4 and 5 gene transcription is regulated by the environment of feeding and management, and suggest that feeding and management could be potential key in determining FABP4 and 5 genes transcription for carcass/meat quality traits in breed Hanwoo.

Investigation of Single Nucleotide Polymorphisms in the Adipocyte Fatty-Acid Binding Protein (FABP4) Gene (FABP4 유전자의 단일염기 다형성에 관한 연구)

  • Kim, Sang-Wook;Jung, Ji-Hye;Kim, Kwan-Suk;Lee, Cheol-Koo;Kim, Jong-Joo;Choi, Bong-Hwan;Kim, Tae-Hun;Song, Ki-Duk;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1505-1510
    • /
    • 2007
  • We found 8 single nucleotide polymorphisms (SNPs) in adipocyte fatty acid bonding protein (FABP4) gene as candidate gene of FAT1 locus on pig chromosome 4. With over 800 heads of major commercial pig breeds including Duroc, Landrace, Berkshire and Yorkshire, we analyzed SNPs of FABP4 gene to determine possible effects of FABP4 genotype to economically important traits. $400{\sim}800\;bp$ amplicons in FABP4 gene were used PCR-RFLP for each SNPs and we found that the frequency of some SNPs of this gene was different among the breeds. According to the statistical analyses to determine possible associations of each genotype with economic traits, it was found that subgroup with different genotypes showed significant differences in daily gain, backfat thickness, lean percentage and feed conversion ratio (P<0.05). Thus, as a Part of enhancing the selection competence related to swine growth rate and lean percentage, it is expected that FABP4 gene markers verified in this study will be useful to use for Korean commercial pig industry.

Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle

  • Cho, Seo-Ae;Park, Tae-Sung;Yoon, Du-Hak;Cheong, Hyun-Sub;Namgoong, Sohg;Park, Byung-Lae;Lee, Hye-Won;Han, Chang-Soo;Kim, Eun-Mi;Cheong, Il-Cheong;Kim, Hee-Bal;Shin, Hyoung-Doo
    • BMB Reports
    • /
    • v.41 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • The aim of this study was to determine whether single nucleotide polymorphisms (SNP) in the beef cattle adipocyte fatty-acid binding protein 3 and 4 (FABP3 and FABP4) genes are associated with carcass weight (CW) and back fat thickness (BF) of beef cattle. By direct DNA sequencing in 24 unrelated Korean native cattle, we identified 20 SNPs in FABP3 and FABP4. Among them, 10 polymorphic sites were selected for genotyping in our beef cattle. We performed SNP, haplotype and linkage disequilibrium studies on 419 Korean native cattle with the 10 SNPs in the FABP genes. Statistical analysis revealed that 220A>G (I74V) and 348+303T>C polymorphisms in FABP4 showed putative associations with BF traits (P=0.02 and 0.01, respectively). Our findings suggest that the polymorphisms in FABP4 may play a role in determining one of the important genetic factors that influence BF in beef cattle.

FABP3 and FABP4 Genes Are the Potential Candidates for Body Weights in Korean Native Chicken

  • Cahyadi, Muhammad;Seo, Dongwon;Choi, Nuri;Jin, Shil;Maharani, Dyah;Heo, Kang Nyeong;Kang, Bo Seok;Jo, Cheorun;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.91-96
    • /
    • 2013
  • FABPs, 15 kDa organic substances, are small intracellular proteins which have a primary role to regulate fatty acid uptake and intracellular transport. This study was conducted to identify SNPs in the two FABP family genes and their associations with the body weight traits in Korean native chicken (KNC). Two SNPs, namely g.508C>T of FABP3 gene and g.285C>T of FABP4 gene, have been genotyped by using PCR-RFLP method. The results showed that FABP3 was significantly associated with body weight at birth, body weights at 12 to 20 weeks, and also slaughter weight. Moreover, the g.285C>T SNP of FABP4 gene was not associated with any body weight traits. These results suggested that the g.508C>T SNP of FABP3 genes can be used as molecular markers to select KNC having desirable body weights.

Major genotype identification affecting economic traits in FABP4, SCD, FASN and SREBPs genes of Korean cattle (한우의 FABP4, SCD, FASN, SREBPs 유전자에서 경제형질에 영향을 미치는 우수 유전자형 선별)

  • Lee, Jea-Young;Park, Jae-Cheol
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.7
    • /
    • pp.1247-1255
    • /
    • 2016
  • Kim and Lee (2015) identified a superior FABP4 gene that improves the grade and fatty acid of Korean cattle. This study selects a superior genotype by expanding genes that influence the economic traits of Korean cattle. Expanded genes are FABP4, SCD, FASN and SREBPs that are related to grade and fatty acid (Oh, 2014). We use the adjusted economic-trait values with environmental factors excluded. We also applied multifactor dimensionality reduction(MDR) method to data of the adjusted economic-trait values. As a result, we identified superior genes and genotypes which improved the grade and fatty acid of Korean cattle.

Gene expression of fatty acid binding protein genes and its relationship with fat deposition of Thai native crossbreed chickens

  • Tunim, Supanon;Phasuk, Yupin;Aggrey, Samuel E.;Duangjinda, Monchai
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.751-758
    • /
    • 2021
  • Objective: The objectives of this study were to investigate the relationship between the mRNA expression of adipocyte type fatty acid binding protein (A-FABP) and heart type FABP (H-FABP) in Thai native chicken crossbreeds and evaluate the level of exotic inclusion in native chicken that will improve growth while maintaining its relatively low carcass fat. Methods: The fat deposition traits and mRNA expression of A-FABP and H-FABP were evaluated at 6, 8, 10, and 12 weeks of age in 4 chicken breeds (n = 8/breed/wk) (100% Chee breed [CH] [100% Thai native chicken background], CH male and broiler female [Kaimook e-san1; KM1] [50% CH background], broiler male and KM1 female [Kaimook e-san2; KM2] [25% CH background], and broiler [BR]) using abdominal fat (ABF) and muscular tissues. Results: The BR breed was only evaluated at 6 weeks of age. At week 6, the CH breed had a significantly lower A-FABP expression in ABF and intramuscular fat (IF) compared with the other breeds. At 8 to 12 weeks, the KM2 groups showed significant upregulation (p<0.05) of A-FABP in both ABF and IF compared to the CH and KM1 groups. The expression of H-FABP did not follow any consistent pattern in both ABF and IF across the different ages. Conclusion: Some level of crossbreeding CH chickens can be done to improve growth rate while maintaining their low ABF and IF. The expression level of A-FABP correlate with most fat traits. There was no consistency of H-FABP expression across breed. A-FABPs is involved in fat deposition, genetic markers in these genes could be used in marker assisted studies to select against excessive fat accumulation.

Genetic polymorphism in regulatory region of fatty acid binding protein 4 (FABP4) and its effect on carcass weight in Hanwoo steers (한우 지방산결합단백질 4(FABP4) 유전자 조절영역내 단일염기변이(SNP)와 도체형질간 연관성 분석)

  • Lee, Seung-Hwan;Kim, Nam-Kuk;Kim, Seung-Chang;Choi, Bong-Hwan;Heo, Kang-Neung;Lee, Chang-Soo;Kim, Oun-Hyun;Lee, Jun-Heon;Kim, Hyeong-Cheul;Hong, Seong-Koo
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.4
    • /
    • pp.673-680
    • /
    • 2011
  • The aim of this study was to identify the polymorphism on fatty acid binding protein (FABP4) gene promoter region and its association with carcass traits in Hanwoo. We performed PCR-direct sequencing of FABP4 promoter region to identify single nucleotide polymorphism (SNPs) using unrelated 24 Hanwoo bulls. Four SNPs (-298A>G, -472A>G, -887A>G, -862A>G) were detected in the promoter region and genotyped on 583 Hanwoo steers. A linear mixed model revealed an association of three SNPs (-298A>G, -472A>G and -862A>G) with carcass weight and marbling score in dominance model (P<0.05). The animals with AA genotypes for the three SNPs were heavier carcass weight (5 kg) than animals with GG genotypes in the statistical analysis. For the marbling score, the AA genotype was lower effect of marbling score (0.21) than GG genotypes. In conclusion, this study indicates an important role for three SNPs detected in promoter region of FABP4 in determining carcass weight and marbling score in Hanwoo.