DOI QR코드

DOI QR Code

Identification of genetic polymorphisms in FABP3 and FABP4 and putative association with back fat thickness in Korean native cattle

  • Cho, Seo-Ae (Laboratory of Bioinformatics and Biostatistics, Interdisciplinary Program in Bioinformatics & Laboratory of Bioinformatics and Biostatistics, Department of Statistics, Seoul National University) ;
  • Park, Tae-Sung (Laboratory of Bioinformatics and Biostatistics, Interdisciplinary Program in Bioinformatics & Laboratory of Bioinformatics and Biostatistics, Department of Statistics, Seoul National University) ;
  • Yoon, Du-Hak (National Livestock Research Institute, RDA) ;
  • Cheong, Hyun-Sub (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Namgoong, Sohg (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Park, Byung-Lae (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Lee, Hye-Won (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Han, Chang-Soo (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Kim, Eun-Mi (Department of Genetic Epidemiology, SNP Genetics Inc.) ;
  • Cheong, Il-Cheong (National Livestock Research Institute, RDA) ;
  • Kim, Hee-Bal (Department of Agricultural Biotechnology, Seoul National University) ;
  • Shin, Hyoung-Doo (Department of Genetic Epidemiology, SNP Genetics Inc.)
  • Published : 2008.01.31

Abstract

The aim of this study was to determine whether single nucleotide polymorphisms (SNP) in the beef cattle adipocyte fatty-acid binding protein 3 and 4 (FABP3 and FABP4) genes are associated with carcass weight (CW) and back fat thickness (BF) of beef cattle. By direct DNA sequencing in 24 unrelated Korean native cattle, we identified 20 SNPs in FABP3 and FABP4. Among them, 10 polymorphic sites were selected for genotyping in our beef cattle. We performed SNP, haplotype and linkage disequilibrium studies on 419 Korean native cattle with the 10 SNPs in the FABP genes. Statistical analysis revealed that 220A>G (I74V) and 348+303T>C polymorphisms in FABP4 showed putative associations with BF traits (P=0.02 and 0.01, respectively). Our findings suggest that the polymorphisms in FABP4 may play a role in determining one of the important genetic factors that influence BF in beef cattle.

Keywords

References

  1. Zimmerman, A. W. and Veerkamp, J. H. (1998) Members of the fatty acid-binding protein family inhibit cell-free protein synthesis. FEBS Lett. 437, 183-186. https://doi.org/10.1016/S0014-5793(98)01224-1
  2. Chmurzynska, A. (2006) The multigene family of fatty acid-binding proteins (FABPs): function, structure and polymorphism. J. Appl. Genet. 47, 39-48. https://doi.org/10.1007/BF03194597
  3. Veerkamp, J. H. and Maatman, R. G. (1995) Cytoplasmic fatty acid-binding proteins: their structure and genes. Prog. Lipid Res. 34, 17-52. https://doi.org/10.1016/0163-7827(94)00005-7
  4. Gerbens, F., van Erp, A. J., Harders, F. L., Verburg, F. J., Meuwissen, T. H., Veerkamp, J. H. and te Pas, M. F. (1999) Effect of genetic variants of the heart fatty acidbinding protein gene on intramuscular fat and performance traits in pigs. J. Anim. Sci. 77, 846-852.
  5. Moon, S., Shin, H. D., Cheong, H. S., Cho, H. Y., Namgoong, S., Kim, E. M., Han, C. S., Sung, S. and Kim, H. (2007) BcSNPdb: bovine coding region single nucleotide polymorphisms located proximal to quantitative trait loci. J. Biochem. Mol. Biol. 40, 95-99. https://doi.org/10.5483/BMBRep.2007.40.1.095
  6. Ovilo, C., Clop, A., Noguera, J. L., Oliver, M. A., Barragan, C., Rodriguez, C., Silio, L., Toro, M. A., Coll, A., Folch, J. M., Sanchez, A., Babot, D., Varona, L. and Perez-Enciso, M. (2002) Quantitative trait locus mapping for meat quality traits in an Iberian ${\times}$ Landrace F2 pig population. J. Anim. Sci. 80, 2801-2808.
  7. Yue, G., Russo, V., Davoli, R., Sternstein, I., Brunsch, C., Schroffelova, D., Stratil, A., Moser, G., Bartenschlager, H., Reiner, G. and Geldermann, H. (2003) Linkage and QTL mapping for sus scrofa chromosome 13. J. Anim. Breed. Genet. 120, 103-110. https://doi.org/10.1046/j.0931-2668.2003.00430.x
  8. de Koning, D. J., Janss, L. L., Rattink, A. P., van Oers, P. A., de Vries, B. J., Groenen, M. A., van der Poel, J. J., de Groot, P. N., Brascamp, E. W. and van Arendonk, J. A. (1999) Detection of quantitative trait loci for backfat thickness and intramuscular fat content in pigs (Sus scrofa). Genetics 152, 1679-1690.
  9. Rattink, A. P., De Koning, D. J., Faivre, M., Harlizius, B., van Arendonk, J. A. and Groenen, M. A. (2000) Fine mapping and imprinting analysis for fatness trait QTLs in pigs. Mamm. Genome 11, 656-661. https://doi.org/10.1007/s003350010117
  10. Roy, R., Calvo, J. H., Hayes, H., Rodellar, C. and Eggen, A. (2003) Fine mapping of the bovine heart fatty acidbinding protein gene (FABP3) to BTA2q45 by fluorescence in situ hybridization and radiation hybrid mapping. Anim. Genet. 34, 466-467. https://doi.org/10.1046/j.0268-9146.2003.01052.x
  11. Michal, J. J., Zhang, Z. W., Gaskins, C. T. and Jiang, Z. (2006) The bovine fatty acid binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth in Wagyu ${\times}$ Limousin F2 crosses. Anim. Genet. 37, 400-402. https://doi.org/10.1111/j.1365-2052.2006.01464.x
  12. Gabriel, S. B., Schaffner, S. F., Nguyen, H., Moore, J. M., Roy, J., Blumenstiel, B., Higgins, J., DeFelice, M., Lochner, A., Faggart, M., Liu-Cordero, S. N., Rotimi, C., Adeyemo, A., Cooper, R., Ward, R., Lander, E. S., Daly, M. J. and Altshuler, D. (2002) The structure of haplotype blocks in the human genome. Science 296, 2225-2229. https://doi.org/10.1126/science.1069424
  13. Hirschhorn, J. N. and Altshuler, D. (2002) Once and againissues surrounding replication in genetic association studies. J. Clin. Endocrinol. Metab. 87, 4438-4441. https://doi.org/10.1210/jc.2002-021329
  14. Estelle, J., Perez-Enciso, M., Mercade, A., Varona, L., Alves, E., Sanchez, A. and Folch, J. M. (2006) Characterization of the porcine FABP5 gene and its association with the FAT1 QTL in an Iberian by Landrace cross. Anim. Genet. 37, 589-591. https://doi.org/10.1111/j.1365-2052.2006.01535.x
  15. Mercade, A., Perez-Enciso, M., Varona, L., Alves, E., Noguera, J. L., Sanchez, A. and Folch, J. M. (2006) Adipocyte fatty-acid binding protein is closely associated to the porcine FAT1 locus on chromosome 4. J. Anim. Sci. 84, 2907-2913. https://doi.org/10.2527/jas.2005-663
  16. APGS (1995) Report of business for animal products grading. Animal products grading system, National Livestock Co-operatives Federation, Korea.
  17. Vreeland, W. N., Meagher, R. J. and Barron, A. E. (2002) Multiplexed, high-throughput genotyping by single-base extension and end-labeled free-solution electrophoresis. Anal. Chem. 74, 4328-4333. https://doi.org/10.1021/ac0258094
  18. Hedrick, P. W. (1987) Gametic disequilibrium measures: proceed with caution. Genetics 117, 331-341.
  19. Stephens, M., Smith, N. J. and Donnelly, P. (2001) A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978-989. https://doi.org/10.1086/319501
  20. Barrett, J. C., Fry, B., Maller, J. and Daly, M. J. (2005) Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics 21, 263-265. https://doi.org/10.1093/bioinformatics/bth457

Cited by

  1. Polymorphisms in fatty acid binding protein 5 show association with type 2 diabetes vol.92, pp.1, 2011, https://doi.org/10.1016/j.diabres.2011.01.005
  2. Association of polymorphisms in solute carrier family 27, isoform A6 (SLC27A6) and fatty acid-binding protein-3 and fatty acid-binding protein-4 (FABP3 and FABP4) with fatty acid composition of bovine milk vol.96, pp.9, 2013, https://doi.org/10.3168/jds.2013-6703
  3. A critical analysis of production-associated DNA polymorphisms in the genes of cattle, goat, sheep, and pig vol.19, pp.9, 2008, https://doi.org/10.1007/s00335-008-9141-x
  4. Candidate genes for production traits in Nelore beef cattle vol.11, pp.4, 2012, https://doi.org/10.4238/2012.September.19.1
  5. Association between the Polymorphism of the Fatty acid binding protein 5 (FABP5) Gene within the BTA 14 QTL Region and Carcass/Meat Quality Traits in Hanwoo vol.53, pp.4, 2011, https://doi.org/10.5187/JAST.2011.53.4.311
  6. Identification of polymorphism in fatty acid binding protein 3 (FABP3) gene and its association with milk fat traits in riverine buffalo (Bubalus bubalis) vol.48, pp.4, 2016, https://doi.org/10.1007/s11250-016-1017-6
  7. Whole-genome resequencing of Hanwoo (Korean cattle) and insight into regions of homozygosity vol.14, pp.1, 2013, https://doi.org/10.1186/1471-2164-14-519
  8. Association of CSSM066 and ILSTS011 microsatellite markers and thyroglobulin gene SNP with backfat in Canchim cattle vol.69, pp.1, 2012, https://doi.org/10.1590/S0103-90162012000100001
  9. Variation in the bovine FABP4 gene affects milk yield and milk protein content in dairy cows vol.5, pp.1, 2015, https://doi.org/10.1038/srep10023
  10. Quantitative Trait Loci and Candidate Genes Affecting Fatty Acid Composition in Cattle and Pig vol.31, pp.3, 2011, https://doi.org/10.5851/kosfa.2011.31.3.325
  11. PCR-SSCP analysis of MDGI gene and its association with milk production traits in river buffalo ( Bubalus bubalis ) vol.115, 2017, https://doi.org/10.1016/j.rvsc.2017.06.006
  12. AGHR polymorphism and its associations with carcass traits in Harrwoo cattle vol.31, pp.1, 2009, https://doi.org/10.1007/BF03191136
  13. Effect of DNA polymorphisms related to fatty acid composition in adipose tissue of Holstein cattle vol.82, pp.3, 2011, https://doi.org/10.1111/j.1740-0929.2010.00855.x
  14. Associations between lipid metabolism and fertility in the dairy cow vol.25, pp.1, 2013, https://doi.org/10.1071/RD12272
  15. Associations of polymorphisms in bovine DGAT1, FABP4, FASN, and PPARGC1A genes with intramuscular fat content and the fatty acid composition of muscle and subcutaneous fat in Fleckvieh bulls vol.114, 2016, https://doi.org/10.1016/j.meatsci.2015.12.004
  16. Identification of the SNP (Single Nucleotide Polymorphism) for Fatty Acid Composition Associated with Beef Flavor-related FABP4 (Fatty Acid Binding Protein 4) in Korean Cattle vol.25, pp.7, 2012, https://doi.org/10.5713/ajas.2012.12078
  17. Genetic Variation in FABP4 and Evaluation of Its Effects on Beef Cattle Fat Content vol.28, pp.3, 2017, https://doi.org/10.1080/10495398.2016.1262868
  18. Association of five candidate genes with fatty acid composition in Korean cattle vol.39, pp.5, 2012, https://doi.org/10.1007/s11033-011-1426-6
  19. Application of Linkage Disequilibrium Mapping Methods to Detect QTL for Carcass Quality on Chromosome 6 Using a High Density SNP Map in Hanwoo vol.24, pp.4, 2011, https://doi.org/10.5713/ajas.2011.11019
  20. FABP3, FABP4 and ANXA9 SNP genotypes in relation to breeding values for milk production traits in Polish Holstein-Friesian cows vol.49, pp.8, 2013, https://doi.org/10.1134/S1022795413080085
  21. Heart-type Fatty Acid-binding Protein Is Essential for Efficient Brown Adipose Tissue Fatty Acid Oxidation and Cold Tolerance vol.286, pp.1, 2011, https://doi.org/10.1074/jbc.M110.184754
  22. Identification of marbling-related candidate genes in M. longissimus dorsi of high- and low marbled Hanwoo (Korean Native Cattle) steers vol.41, pp.12, 2008, https://doi.org/10.5483/BMBRep.2008.41.12.846
  23. Polymorphic effects of FABP4 and SCD genes on intramuscular fatty acid profiles in longissimus muscle from two cattle breeds vol.84, pp.4, 2015, https://doi.org/10.2754/avb201584040327
  24. BOARD-INVITED REVIEW: The biology and regulation of preadipocytes and adipocytes in meat animals1,2 vol.87, pp.4, 2009, https://doi.org/10.2527/jas.2008-1427
  25. Fine mapping of quantitative trait loci underlying sensory meat quality traits in three French beef cattle breeds1 vol.92, pp.10, 2014, https://doi.org/10.2527/jas.2014-7868
  26. Tissue expression analysis, cloning, and characterization of the 5′-regulatory region of the bovine fatty acid binding protein 4 gene1 vol.93, pp.11, 2015, https://doi.org/10.2527/jas.2015-9378
  27. Effect of single nucleotide polymorphisms on intramuscular fat content in Hungarian Simmental cattle vol.31, pp.9, 2018, https://doi.org/10.5713/ajas.17.0773