• Title/Summary/Keyword: FA(Fly ash)

Search Result 260, Processing Time 0.023 seconds

Electrical resistivity and capillarity of self-compacting concrete with incorporation of fly ash and limestone filler

  • Silva, Pedro;de Brito, Jorge
    • Advances in concrete construction
    • /
    • v.1 no.1
    • /
    • pp.65-84
    • /
    • 2013
  • Electrical resistivity is a property associated with both the physical and chemical characteristics of concrete. It allows the evaluation of the greater or lesser difficulty with which aggressive substances penetrate the concrete's core before the dissolution of the passive film process and the consequent reinforcement's corrosion begin. This work addresses the capillary absorption of self-compacting concrete (SCC) with various types and contents of additions, correlating it with its electrical resistivity. To that effect, binary and ternary mixes of SCC were produced using fly ashes (FA) and limestone filler (LF). A total of 11 self-compactable mixes were produced: one with cement (C) only; three with C + FA in 30%, 60% and 70% substitution ratios; three with C + LF in 30%, 60% and 70% substitution ratios; four with C + FA + LF in combinations of 10-20%, 20-10%, 20-40% and 40-20% substitution ratios, respectively; and four reference mixes according to the LNEC E 464 specification, which refers to the NP EN 206-1 norm. The evaluation of the capillarity of the mixes produced was made through the determination of the water absorption by capillarity coefficient according to the LNEC E 393 specification. The electrical resistivity was evaluated using the European norm proposal presented by the EU-Project CHLORTEST (EU funded research Project under 5FP GROWTH programme) and based on the RILEM TC-154 EMC technical recommendation. The results indicate that SCC's capillarity is strongly conditioned by the type and quantity of the additions used. It was found that FA addition significantly improves some of the properties studied especially at older ages.

Characteristics of Sintered Bodies Made from the System of Paper Sludge Ash - Fly Ash - Clay (종이재-석탄회-점토계 소지를 이용한 소결체의 특성 연구)

  • Hong, Jin-Ok;Kang, Seung-Gu;Lee, Ki-Gang;Kim, Yoo-Taek;Kim, Young-Jin;Kim, Jung-Hwan;Park, Myoung-Sik
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.10
    • /
    • pp.908-913
    • /
    • 2001
  • Paper sludge Ash (PA) and Fly Ash (FA) wastes are usually land-filled for reclamation or substituted for cements as a resource. It could also offer some advantages when they are substituted for clay to preserve the environment. To recycle those wastes, the sintered specimen made of PA-FA-Clay system were examined to find the microstructure and physical properties. The ratio of clay to wastes was fixed as 30:70 by wt%, while PA to FA within waste portion were varied in the range of $1:6{\sim}7:0$. Those specimens were fired in $1150{\sim}1350^{\circ}C$. It was found that the relative density of sintered specimen was increased with amount of PA added at low sintering temperature (i.e, $1150{\sim}1200^{\circ}C$). This is due to increased amount of liquid during sintering. It is shown, however that at high sintering temperature ($1250{\sim}1350^{\circ}C$), the relative density of specimens was decreased with amount of PA added. This is because of overfiring phenomenon which may be able to induce an inhomogeneous microstructure and increased porosity. The mechanical properties of sintered specimen were depended upon the homogeneity of microstructure in accordance with SEM (Scanning Electron Microscopy) and pore size distribution analysis. For example, the compressive strength of 10PA-60FA-30Clay specimen sintered at $1225^{\circ}C$ was twice higher than that of 70PA-30Clay specimen even thought the relative density of those specimen was similar. This decreased strength of 70PA-30Clay specimen appears to be an inhomogeneity of microstructure due to overfiring.

  • PDF

Evaluation of Shrinkage Cracking Characteristics and Degree of Restraint for Ultra-High-Strength Concrete (초고강도 콘크리트의 수축 균열 특성 및 구속도 평가)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.641-650
    • /
    • 2010
  • The concrete cracking from the restrained stress caused by the shrinkage may play significant cause of deterioration of concrete structures by allowing the permeation of sulphate and chloride ions which in turn triggers corrosion of steel reinforcement. In particular, the cracking becomes more critical as water binder ratio (W/B) is reduced and concrete strength increases. Therefore, it needs to evaluate correctly the comprehensive shrinkage behavior of concrete with high strength: high-strength concrete (HSC), ultra-highstrength concrete (UHSC). The unrestrained shrinkage tests, however, cannot estimate the net shrinkage effectively which affects cracking after full development of strength and stiffness because it does not consider the degree of restraint, strength development, stress relaxation, and so on. Therefore, in this study, both free and restrained shrinkage tests with variables of W/B (W/B of 30, 25 and 16%) and admixtures (fly ash (FA) and granulated blast-furnace slag (BFS)) for HSC, very-high-strength concrete (VHSC) and UHSC were performed. The test results indicated that the autogenous shrinkage and total shrinkage at drying condition were reduced as W/B increased and FA, BFS were added, and the cracking behavior was suppressed as W/B increased and FA was added.

The Fundamental Properties of High Fluidity Mortar with Activated Ternary Blended Slag Cement (활성화된 삼성분계 고유동 모르타르의 기초특성)

  • Bae, Ju-Ryong;Kim, Tae-Wan;Kim, In-Tae;Kim, Hyoung-Seok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.74-82
    • /
    • 2017
  • This research presents the results of the strength and drying shrinkage properties to study the effect of ground granulated blast furnace slag(GGBFS), fly ash(FA) and calcium sulfoaluminate(CSA) for activated ternary blended slag cement. The activated ternary blended cement(ATBC) mortar were prepared having a constant water-cementitious materials ratios of 0.4. The GGBFS contents ratios of 100%, 80%, 70% and 60%, FA replacement ratios of 10%, 20%, 30% and 40%, CSA ratios of 0%, 10%, 20% and 30% were designed. The superplasticizer of polycarboxylate type were used. The activator was used of 10% sodium hydroxide(NaOH) + 10% sodium silicate($Na_2SiO_3$) by weight of binder. Test were conducted for mini slump, setting time, V-funnel, water absorption, compressive strength and drying shrinkage. According to the experimental results, the contents of superplasticizer, V-funnel and compressive strength increases with an increase in CSA contents for all mixtures. Moreover, the setting time, water absorption ratios and drying shrinkage ratio decrease with and increase in CSA. One of the major reason for the increase of strength and decrease of drying shrinkage is the accelerated reactivity of GGBFS with alkali activator and CSA. The CSA contents is the main parameter to explain the strength development and decreased drying shrinkage in the ATBC.

A Study on the Basic Properties of Polymer Cement Mortar Using SBR Latex with Blast-Furnace and Fly Ash (폴리머 디스퍼전 SBR과 고로슬래그 미분말 및 플라이애시를 사용한 폴리머 시멘트 모르타르의 기초적 성질에 관한 연구)

  • Kim, Wan-Ki;Jo, Young-Kug
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2021
  • The purpose of this study is to evaluate the improvement of flow, compressive and flexural strengths of polymer cement mortar(PCM) using SBR latex mixed with blast-furnace slag and fly ash. The test specimens were prepared with SBR polymer dispersion, two types of admixture (blast-furnace slag and fly ash), five polymer-cement ratios (P/C; 0, 5, 10, 15 and 20%), and six admixture contents (0, 3, 5, 10, 15 and 20%), plain cement mortar was also made for comparison. From the test results, the flow of PCM was significantly improved compared to ordinary cement mortar, but the flow was slightly reduced when mixed with blast-furnace slag, and the flow was similar to PCM when mixed with fly ash. In addition, the compressive strength of PCM mixed with admixtures was significantly improved, but the flexural strength did not improve except for some mortars. It can be stated that the optimum mix proportions of PCM using SBR with admixture contents 10 to 15% and P/C 10% for the compressive strength improvement, and P/C 20% for flexural strength improvement are recommended respectively in this study.

Assessment on the Seawater Attack Resistance of Antiwashout Underwater Concrete (수중불분리성 콘크리트의 해수침식에 대한저항성 평가)

  • 문한영;김성수;안태송;이승태;김종필
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.683-688
    • /
    • 2001
  • In case of constructing the concrete structures under seawater environment, the concrete suffers from deterioration due to penetration of various ions such as chloride, sulfate and magnesium in seawater. Tn the present study, Immersion tests with artificial seawater were carried out to investigate the resistance to seawater attack of antiwashout underwater concrete. From the results of compressive strength, it was found that blended cement concrete due to mineral admixtures such as fly ash(FA) and ground granulated blast-furnace slag(SGC), were superior to ordinary portland cement concrete with respect to the resistance to seawater attack. Moreover, XRD analysis indicated that the formed reactants of ordinary portland cement paste by sulfate and magnesium ions led to the deterioration of concrete. As expected, however, the blended cements with FA or SGC have a good resistance to seawater attack. This paper would discuss the mechanism of seawater deterioration and benefical effects of antiwashout underwater concretes with mineral admixtures.

  • PDF

A Study on the Mechanical Properties of Floor Slab structures Using Fiber Reinforced Cement Composites (섬유보강 시멘트 복합체를 이용한 상판구조의 역학적 특성에 관한 연구)

  • 박승범;윤의식;차종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.343-349
    • /
    • 1994
  • The purpose of this study is to investigate the mechanical properties of floor slab structures with high-strength and lightweight CFRC panel using fly ash, PAN-derived and Pitch-derived carbon fiber. As a result, the flexural strength of CFRC is remarkably increased by CF contents, but compressive strength of the CFRC is not so increased as flexural strength. The bulk specific gravity is influenced by FA contents more than by CF contents, The compressive strength and the flexural strength are increased by FA contests, but decreased the case of 30% of contents. In order to increasing the flexural-carrying capacity of floor slab structures, it is recommended that the shape of anchor for reinforcement is required type-C and the spacing of anchor is required below 60mm.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part I. Workability of Fresh Concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화콘크리트의 공학적 특성에 관한 실험적 연구 (제1보, 아직 굳지않은 콘크리트의 시공성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.161-166
    • /
    • 1994
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admixture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete, it is presented that using admixtures like flysh and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

An Experimental Study on the Engineering Properties of High Strength Flowing Concrete Using Flyash and Silicafume (Part 2. Engineering Properties of Hardened concrete) (플라이애시 및 실리카흄을 사용한 고강도유동화 콘크리트의 공학적 특성에 관한 실 험적 연구 (제 2보. 경화콘크리트의 공학적 특성 검토))

  • 김진만;이상수;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.84-87
    • /
    • 1995
  • Production of high strength concrete requires a low water-cement ratio and this leads to the high cement content. Mineral admixture like fly ash(FA) is often cheaper than ordinary portland cement(OPC) and this factor in combination with possible improvement in workability and moderation of the heat evolution of the cement-rich mixes tends to encourage its use. The other mineral admisture that its use has been widly advocated is silica fume that increases compressive strength due to its pozzolanic reaction. The objective of this study is to assess the contribution of mineral admixtures(FA, SF) to the workability and the strength of concrete with low water-binder ratios. In this experimental study that investigates and analyzes the properties of fresh concrete. it is presented that using admixtures like flyash and silica fume as binding material increases properties of high strength flowing concrete having very low water cementitious ratios of 0.25 and 0.30.

  • PDF

A Study on the Properties of Mixture Proportion and Compressive Strength of Concrete with the Kind of Mineral Admixtures (혼화재 종류에 따른 콘크리트의 배합 및 압축강도 특성에 관한 연구)

  • Lee Eun-Hi;Shon Myeong-Soo;Han Min-Cheoi;Cha Cheon-Soo;Kim Seong-Soo;Han Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • v.y2004m10
    • /
    • pp.51-54
    • /
    • 2004
  • This paper investigated the results of mixture proportion and compressive strength of concrete incorporating mineral admixtures. W/B and contents of mineral admixtures were selected as test parameters. According to test results, use of mineral admixtures resulted in a reduction of fluidity and air contents caused by increased fine particles and absorption effect of FA on reduction of AE agent. Thus, increase of SP and AE agent was needed to maintain the same fluidity and air content as plain concrete. At early stage, use of CKD was beneficial to the compressive strength while at 28days. incorporation of FA and BS had favorable effect on the compressive strength.

  • PDF