• Title/Summary/Keyword: FA(Fly ash)

Search Result 260, Processing Time 0.021 seconds

Effects of waste glass aggregate on thermal behavior of fly ash alkali activated mortar

  • Sasui, Sasui;Kim, Gyu Yong;Pyeon, Su Jeong;Eu, Ha Min;Lee, Yae Chan;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.115-116
    • /
    • 2022
  • This study incorporates fine waste glass (GS) as a replacement for natural sand (NS) in fly ash (FA) based alkali activated mortar (AAm). AAms were heated at elevated temperature of 200℃, 400℃, 600℃, and 800℃ to explore the residual mass, compressive strength, thermal expansion and change in microstructure of matrix. Results showed greater resistance of AAms with increasing GS content to 50% at each temperature. Owing to the melting of GS at 800℃, the greater matrix bond was observed for AAm incorporating 75% and 100% GS as a result, the residual compressive strength was increased.

  • PDF

Fundamental Properties of Fly ash Concrete Containing Lightly Burnt MgO Powder (저온 소성한 MgO 분말을 함유한 플라이애시 콘크리트의 기본 물성)

  • Choi, Seul-Woo;Jang, Bong-Seok;Lee, Kwang-Myong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.475-481
    • /
    • 2013
  • Although the lightly burnt MgO at $850{\sim}1000^{\circ}C$ has expansibility, it does not lead to unsound concrete. The expansion of MgO could compensate for shrinkage of concrete for a long-term, because the hydration of MgO occurs at a slow pace. Recently, the study and application of mineral admixture such as fly ash and blast furnace slag have increased for the hydration heat reduction, durability improvement, and reducing $CO_2$ emission in the construction industry. Thus, it is necessary to research on the concrete that contains both a mineral admixture and MgO as an expansion agent. This study investigates fundamental properties of fly ash concrete with lightly burnt MgO through various experiments. The adiabatic temperature test results showed that the fly ash concrete with MgO of the 5% replacement ratio had the slower pace of the temperature rise and the lower final temperature than the fly ash concrete. The influences of MgO on long-term compressive strength varied depending on water-binder ratio, and the long-term length change test results indicated the expansion effects of the FA concrete containing MgO.

Influence of Fly Ash on Life-Cycle Environmental Impact of Concrete (플라이애시가 콘크리트의 전과정 환경영향에 미치는 효과)

  • Jung, Yeon-Back;Yang, Keun-Hyeok;Choi, Dong-Uk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.6
    • /
    • pp.515-522
    • /
    • 2014
  • In order to quantitatively evaluate the effect of fly ash (FA) as partial replacement of cement on the life-cycle environmental impact of concrete, a comprehensive database including 4023 laboratory mixes and 2120 plant mixes was analyzed. The environmental loads on the life-cycle assessment were quantitatively converted into environmental impact indicators through categorization, characterization, normalization and weighting process. The life-cycle environmental impacts of concrete could be classified into three categories including global warming, photochemical oxidant creation and abiotic resource depletion. Furthermore, these environmental impacts of concrete was decreased with the increase of the replacement level of FA and governed by the unit content of ordinary portland cement (OPC). As a result, simple equations to assess the environmental impact indicators could be formulated as a function of the unit content of binder and the replacement level of FA.

Practical applicable model for estimating the carbonation depth in fly-ash based concrete structures by utilizing adaptive neuro-fuzzy inference system

  • Aman Kumar;Harish Chandra Arora;Nishant Raj Kapoor;Denise-Penelope N. Kontoni;Krishna Kumar;Hashem Jahangir;Bharat Bhushan
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.119-138
    • /
    • 2023
  • Concrete carbonation is a prevalent phenomenon that leads to steel reinforcement corrosion in reinforced concrete (RC) structures, thereby decreasing their service life as well as durability. The process of carbonation results in a lower pH level of concrete, resulting in an acidic environment with a pH value below 12. This acidic environment initiates and accelerates the corrosion of steel reinforcement in concrete, rendering it more susceptible to damage and ultimately weakening the overall structural integrity of the RC system. Lower pH values might cause damage to the protective coating of steel, also known as the passive film, thus speeding up the process of corrosion. It is essential to estimate the carbonation factor to reduce the deterioration in concrete structures. A lot of work has gone into developing a carbonation model that is precise and efficient that takes both internal and external factors into account. This study presents an ML-based adaptive-neuro fuzzy inference system (ANFIS) approach to predict the carbonation depth of fly ash (FA)-based concrete structures. Cement content, FA, water-cement ratio, relative humidity, duration, and CO2 level have been used as input parameters to develop the ANFIS model. Six performance indices have been used for finding the accuracy of the developed model and two analytical models. The outcome of the ANFIS model has also been compared with the other models used in this study. The prediction results show that the ANFIS model outperforms analytical models with R-value, MAE, RMSE, and Nash-Sutcliffe efficiency index values of 0.9951, 0.7255 mm, 1.2346 mm, and 0.9957, respectively. Surface plots and sensitivity analysis have also been performed to identify the repercussion of individual features on the carbonation depth of FA-based concrete structures. The developed ANFIS-based model is simple, easy to use, and cost-effective with good accuracy as compared to existing models.

Investigating the effect of using three pozzolans (including the nanoadditive) in combination on the formation and development of cracks in concretes using non-contact measurement method

  • Grzegorz Ludwik Golewski
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.217-229
    • /
    • 2024
  • This paper presents results of visual analysis of cracks formation and propagation of concretes made of quaternary binders (QBC). A composition of the two most commonly used mineral additives, i.e. fly ash (FA) and silica fume (SF) in combination with nanosilica (nS), has been proposed as a partial replacement of the cement. The principal objective of the present study is to achieve information about the effect of simultaneous incorporation of three pozzolans as partial replacement to the OPC on the fracture processes in concretes made from quaternary binders (QBC). The modern and precise non-contact measurement method (NCMM) via digital image correlation (DIC) technique was used, during the studies. In the course of experiments it was established that the substitution of OPC with three pozzolans including the nanoadditive in FA+SF+nS FA+SF+nS combination causes a clear change of brittleness and behavior during fractures in QBCs. It was found that the shape of cracks in unmodified concrete was quasi-linear. Substitution of the binder by SCMs resulted in a slight heterogeneity of the structure of the QBC, including only SF and nS, and clear heterogeneity for concretes with the FA additive. In addition, as content of FA rises throughout each of QBC series, material becomes more ductile and shows less brittle failure. It means that an increase in the FA content in the concrete mix causes a significant change in fracture process in this composite in comparison to concrete with the addition of silica modifiers only.

Study of strength and microstructure of a new sustainable concrete incorporating pozzolanic materials

  • Grzegorz Ludwik Golewski
    • Structural Engineering and Mechanics
    • /
    • v.86 no.4
    • /
    • pp.431-441
    • /
    • 2023
  • The aim of this paper is to present a new sustainable ternary and quaternary binder by partially replacing ordinary Portland cement (OPC) with different percentages of supplementary cementitious materials. The motivation is to reduce our dependency on OPC to reduce CO2 emission and carbon foot print. As the main substitute for the OPC, siliceous fly ash was used. Moreover, silica fume and nanosilica were also used. During examinations the main mechanical parameters of concrete composites, i.e., compressive strength (fcm) and splitting tensile strength (fctm) were assed. The microstructure of these materials was also analysed. It was found that the concrete incorporating pozzolanic materials is characterized by a well-developed structure and has high values of mechanical parameters. The quaternary concrete containing: 80% OPC, 5% FA, 10% SF, and 5% nS have shown the best results in terms of good strength parameters as well as the most favourable microstructure, whereas the worst mechanical parameters with microstructure containing microcracks at phase interfaces were characterized by concrete with more content of FA additive in the concrete mix, i.e., 15%. Nevertheless, all concretes made on quaternary binders had better parameters than the reference one. It can be stated that sustainable concrete incorporating pozzolanic materials could be good substitute of ordinary concretes.

Waste Glass as an Activator in Class-C fly Ash/GGBS based Alkali Activated Material

  • Sasui, Sasui;Kim, Gyu Yong;Lee, Sang Kyu;Son, minjae;Hwang, Eui Chul;Nam, Jeong Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.11a
    • /
    • pp.77-78
    • /
    • 2020
  • An alkaline activator was synthesized by dissolving waste glass powder (WGP) in NaOH-4M solution to explore its effects on the Class-C fly ash (FA) and ground granulated blast furnace slag (GGBS) based alkali-activated material (AAM). The compressive strength and porosity were measured, and (SEM-EDX) were used to study the hydration mechanism and microstructure. Results indicated that the composition of alkali solutions was significant in enhancing the properties of the obtained AAM. As the amount of dissolved WGP increased in alkaline solution, the silicon concentration increased, causing the accelerated reactivity of FA/GGBS to develop Ca-based hydrate gel as the main reaction product in the system, thereby increasing the strength. Further increase in WGP dissolution led to strength loss, which were believed to be due to the excessive water demand of FA/GGBS composites to achieve optimum mixing consistency. Increasing the GGBS proportion in a composite also appeared to improve the strength which contributed to develop C-S-H-type hydration.

  • PDF

Bond performance between metakaolin-fly ash-based geopolymer concrete and steel I-section

  • Hang Sun;Juan Chen;Xianyue Hu
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.529-543
    • /
    • 2024
  • The bonding efficacy of steel I-section embedded in metakaolin-fly ash-based geopolymer concrete (MK-FA-GC) was investigated in this study. Push-out tests were conducted on nine column specimens to evaluate the influence of compressive strength of concrete, embedded length of steel I-section, thickness of concrete cover, and stirrup ratio on the bond performance. Failure patterns, load-slip relationships, bond strength, and distribution of bond stress among the specimens were analyzed. The characteristic bond strength of geopolymer concrete (GC) increased with higher compressive strength, longer embedded steel section length, thicker concrete cover, and larger stirrup ratio. Empirical formulas for bond strength at the loading end were derived based on experimental data and a bond-slip constructive model for steel-reinforced MK-FA-GC was proposed. The calculated bond-slip curves showed good agreement with experimental results. Furthermore, numerical simulations using ABAQUS software were performed on column specimens by incorporating the suggested bond-slip relationship into connector elements to simulate the interface behavior between MK-FA-GC and the steel section. The simulation results showed a good correlation with the experimental findings.

Rheological Properties of Ordinary Portland Cement - Blast Furnace Slag - Fly Ash Blends Containing Ground Fly Ash (분쇄된 플라이애시를 혼합한 3성분계 시멘트의 유동특성)

  • Park, Hyo-Sang;Yoo, Dong-Woo;Byun, Seung-Ho;Song, Jong-Taek
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.58-68
    • /
    • 2009
  • In this study, rheological properties of ternary system cement containing ground fly ash(F3, Blaine specific surface area $8,100\;cm^2/g$) were investigated using mini slump, coaxial cylinder viscometer and conduction calorimeter. In the results, the segregation resistance was observed at high W/B and PC area while the replacement ratio of F3 was increasing. The 2:5:3 system was shown in higher fluidity and lower hydration heat than 3:4:3 system. The segregation range of cement pastes occurred over 175 mm in average diameter by mini slump and below $10\;dynesec/cm^2$ of the plastic viscosity or below 50 cP of the yield stress by coaxial cylinder viscometer. It was observed that even if BFS and FA blended together admixture properties would remaine as they were separately. The properties of admixture would not be changed. On the above results, the decreased replacement ratio of OPC and increased replacement ratio of admixtures would be possible.

Durability studies on concrete with partial replacement of cement and fine aggregates by fly ash and tailing material

  • Sunil, B.M.;Manjunatha, L.S.;Yaragalb, Subhash C.
    • Advances in concrete construction
    • /
    • v.5 no.6
    • /
    • pp.671-683
    • /
    • 2017
  • Commonly used concrete in general, consists of cement, fine aggregate, coarse aggregate and water. Natural river sand is the most commonly used material as fine aggregate in concrete. One of the important requirements of concrete is that it should be durable under certain conditions of exposure. The durability of concrete is defined as its ability to resist weathering action, chemical attack or any other process of deterioration. Durable concrete will retain its original form, quality and serviceability when exposed to its environment. Deterioration can occur in various forms such as alkali aggregate expansion, freeze-thaw expansion, salt scaling by de-icing salts, shrinkage, attack on the reinforcement due to carbonation, sulphate attack on exposure to ground water, sea water attack and corrosion caused by salts. Addition of admixtures may control these effects. In this paper, an attempt has been made to replace part of fine aggregate by tailing material and part of cement by fly ash to improve the durability of concrete. The various durability tests performed were chemical attack tests such as sulphate attack, chloride attack and acid attack test and water absorption test. The concrete blend with 35% Tailing Material (TM) in place of river sand and 20% Fly Ash (FA) in place of OPC, has exhibited higher durability characteristics.