본 연구를 통하여 순위를 이용한 선형회귀모형의 가정된 분포형태가 우리가 실질적으로 많이 접하게 되는 비대칭분포이면서 만일 가정된 분포가 오른쪽으로 늘어진 경우일 때에는, 본 논문에서 제안된 스코어의 가능한 한 0 보다 크고 1 보다 작은 r 및 1 보다 큰 s 를 선택 (0 〈 r 〈 1, s 〉 1) 하는 것이 윌콕슨 스코어보다 높은 효율성을 나타낸다. 이와 반대로 만일 가정된 비대칭분포가 왼쪽으로 늘어진 경우일 때에는, 제안된 스코어의 가능한 한 1 보다 큰 r 및 0 보다 크고 1 보다 작은 s 를 선택 (r 〉 1, 0 〈 s 〈 1) 하는 것이 윌콕슨 스코어보다 높은 효율성을 나타낸다. 아울러 바람직한 r 과 s 를 결정하기 위한 가정된 분포의 대칭성 검정기법도 제시한다.
사용자가 좋아할만한 콘텐츠를 정확하게 추천하는 것은 추천 시스템에서 매우 중요한 요소 중 하나이다. 원치 않는 콘텐츠를 추천하거나, 원하는 것을 추천하지 않는 것은 사용자 만족도 측면에서 안 좋은 영향을 끼친다. 본 연구에서는 콘텐츠의 정확한 추천을 위해 사용자 군집 기반 추천 시스템을 제안한다. 제안하는 알고리즘에서 사용자들의 실제 선호도 점수와 피어슨 상관 계수를 기반으로 사용자들을 여러 군집으로 나눈다. 이 후, 특정 사용자에게 어떤 콘텐츠의 추천 여부 결정은, 같은 군집 내에 있는 다른 사용자들의 해당 콘텐츠의 실제 선호도 점수를 근거로 정한다. 제안하는 알고리즘은 군집화를 사용하지 않는 아이템 기반 협력 필터링 알고리즘보다 정밀도, 재현율, F1 스코어와 같은 추천 정확도에 있어서 의미 있는 성능 향상을 보인다.
최근 딥러닝을 활용한 토지피복분류 기법 연구가 다수 수행되고 있다. 그런데 양질의 토지피복 학습데이터를 충분하게 구축되지 못하여 성능이 저하되는 양상이 확인되었다. 이에 따라 본 연구에서는 데이터 확장 기법의 적용을 통한 토지피복분류 성능의 향상을 확인하였다. 분류 모델로는 U-Net이 활용되었으며 AI Hub에서 제공하는 토지피복 위성 이미지 자료를 연구자료로 활용하였다. 원본 데이터로 학습한 모델과 데이터 확장 기법이 적용된 데이터로 학습한 모델의 픽셀 정확도는 각각 0.905와 0.923이었으며 평균 F1 스코어는 각각 0.720과 0.775로 데이터 확장 기법을 적용하였을 때가 보다 우수한 성능을 나타내는 사실을 확인할 수 있었다. 또한 원본 학습데이터를 활용하여 학습한 모델의 경우 건물, 도로, 논, 밭, 산림, 비대상 지역 클래스에 대한 F1 스코어가 0.770, 0.568, 0.733, 0.455, 0.964 그리고 0.830이었으며, 데이터 확장을 적용하였을 때에 각 클래스에 대한 F1 스코어는 각각 0.838, 0.660, 0.791, 0.530, 0.969 그리고 0.860으로 모든 클래스에 대해 데이터 확장이 성능향상에 유효하다는 사실을 확인하였다. 또한, 클래스 균형에 대한 고려없이 데이터 확장을 적용했음에도 불구하고 데이터 불균형에 의한 클래스별 성능 왜곡을 완화할 수 있다는 사실을 확인할 수 있었다. 이는 절대적인 학습데이터의 양이 증가했기 때문이라 판단된다. 본 연구 결과는 다양한 영상 처리 분야에서 데이터 확장 기법의 중요성과 효과를 증명하는 기반 자료의 역할을 수행할 것으로 기대한다.
부정맥은 심장 박동이 비정상 혹은 불규칙하게 뛰고 있는 상태를 말하며, 실신이나 심장돌연사 등과 같은 위험한 상황을 유발할 수 있기 때문에 이의 조기 검출은 매우 중요하다. 하지만 심전도 신호의 개인차로 인해 분류 시 성능하락이 나타날 수밖에 없다. 본 연구에서는 CNN-LSTM 하이브리드 결합 모델을 이용한 부정맥 분류 방법을 제안한다. 이를 위해 먼저 잡음을 제거한 ECG 신호에서 R파를 검출하고 단일 비트 세그먼트를 추출하였다. 이후 부정맥 신호의 특징을 세밀하게 추출하도록 8개의 합성곱 계층으로 구성하고 이를 LSTM의 입력으로 사용한 후 가중치를 학습시키고 검증 데이터로 모델을 평가한 후 정상 및 부정맥 분류의 변화를 확인하였다. 제안한 방법의 타당성 검증을 위해 MIT-BIH 부정맥 데이터베이스를 사용하여 정확도(accuracy), 정밀도(precision), 재현율(recall), F1 스코어가 사용되었다. 성능평가 결과, 정확도, 정밀도, 재현율, F1 스코어는 각각 92.3%, 90.98%, 92.20%, 90.72%의 우수한 분류율을 나타내었다.
KorQuAD 2.0은 총 100,000+ 쌍으로 구성된 한국어 질의응답 데이터셋이다. 기존 질의응답 표준 데이터인 KorQuAD 1.0과의 차이점은 크게 세가지가 있는데 첫 번째는 주어지는 지문이 한두 문단이 아닌 위키백과 한 페이지 전체라는 점이다. 두 번째로 지문에 표와 리스트도 포함되어 있기 때문에 HTML tag로 구조화된 문서에 대한 이해가 필요하다. 마지막으로 답변이 단어 혹은 구의 단위뿐 아니라 문단, 표, 리스트 전체를 포괄하는 긴 영역이 될 수 있다. Baseline 모델로 구글이 오픈소스로 공개한 BERT Multilingual을 활용하여 실험한 결과 F1 스코어 46.0%의 성능을 확인하였다. 이는 사람의 F1 점수 85.7%에 비해 매우 낮은 점수로, 본 데이터가 도전적인 과제임을 알 수 있다. 본 데이터의 공개를 통해 평문에 국한되어 있던 질의응답의 대상을 다양한 길이와 형식을 가진 real world task로 확장하고자 한다.
일상생활에서 디지털 스크린을 오랜 시간 사용하면 눈의 피로, 안구 건조, 두통 등 컴퓨터 시각 증후군을 경험하게 된다. 컴퓨터 시각 증후군을 예방하기 위해서는 스크린 사용 시간을 제한하고 수시로 휴식을 취하는 것이 중요하다. 최근 스마트폰에서는 스크린 사용 시간을 알 수 있도록 도와주는 다양한 애플리케이션이 존재한다. 하지만, 사용자는 스마트폰 스크린뿐만 아니라 데스크탑, 노트북, 태블릿 등 다양한 스크린을 보기 때문에 이러한 앱만으로는 한계가 있다. 본 논문에서는 color, IMU, lidar 센서 데이터를 이용하여, 사용 중인 스크린 디바이스를 감지하는 머신 러닝 기반 모델을 제안하고 여러 가지 모델의 성능을 비교한다. 성능 비교 결과 신경망 기반 모델이 전통적인 머신 러닝 모델보다 높은 F1 스코어를 보였다. 신경망 기반 모델에서는 MLP, CNN 기반 모델이 LSTM 기반 모델보다 높은 스코어를 보였으며, 전통적인 머신 러닝 모델에서는 RF 모델이 가장 우수했으며, 다음으로는 SVM 모델이었다.
전자금융거래 시장이 활발해지며 이에 따라 신용 카드 이상 거래가 증가하고 있다. 따라서 많은 금융 기관은 신용 카드 이상 거래 탐지 시스템을 사용하여 신용 카드 이상 거래를 탐지하고 개인 피해를 줄이는 등 소비자를 보호하기 위해 큰 노력을 하고 있으며, 이에 따라 높은 정확도로 신용 카드 이상 거래를 탐지할 수 있는 실시간 자동화 시스템에 대한 개발이 요구되었다. 이에 본 논문에서는 머신러닝 기법 중 부스팅 알고리즘을 사용하여 더욱 정확한 신용 카드 이상 거래 탐지 시스템을 제안하고자 한다. XGBoost, LightGBM, CatBoost 부스팅 알고리즘을 사용하여 보다 정확한 신용 카드 이상 거래 탐지 시스템을 개발하였으며, 실험 결과 평균적으로 정밀도 99.95%, 재현율 99.99%, F1-스코어 99.97%를 취득하여 높은 신용 카드 이상 거래 탐지 성능을 보여주는 것을 확인하였다.
대학수학능력시험 국어 과목에서 중요한 비중을 차지하는 독서 영역의 주된 교육 목표는 주어진 지문을 온전히 이해할 수 있는가를 평가하는 데에 있다. 따라서 해당 지문에 포함된 질의를 주어진 지문만으로 풀이할 수 있는지는 해당 영역의 교육 목표와 관련이 깊다. 본 연구에서는 처음으로, 교육학 분야와 딥러닝을 접목하여 이러한 교육 목표가 실제로도 타당하게 실현 가능한지를 입증하고자 한다. 대학수학능력시험의 독서 영역의 개별지문과 그에 수반된 다수의 문장 쌍(sentence pair)을 정제하여 추출하고, 해당 문장 쌍을 주어진 지문에 비추어 적절하거나(T), 적절하지 않은지(F)를 판단하는 이진 분류 태스크(binary classification task)에 적용하여 평가하고자 한다. 그 결과, F1 스코어 기준 59.2%의 human performance를 뛰어넘는 성능을 62.49%의 KoELECTRA를 비롯한 대부분의 언어 모델에서 확인할 수 있었으며, 또한 데이터 전처리 과정에 변화를 줌으로써 언어 모델의 구조적 한계를 극복할 수 있었다.
우리는 전이 학습을 이용하여 원하는 특정 패션 스타일 분류기를 학습하였다. 패션 스타일 검색 결과물을 온라인 쇼핑몰과 연결하는 웹 서비스를 사용자에게 제공한다. 패션 스타일 분류기는 구글에서 이미지 검색을 통해 수집된 데이터를 이용하여 ResNet34[1]에 전이 학습하였다. 학습된 분류 모델을 이용하여 사용자 이미지로부터 패션 스타일을 17가지 클래스로 분류하였고 F1 스코어는 평균 65.5%를 얻었다. 패션 스타일 분류 결과를 네이버 쇼핑몰과 연결하여 사용자가 원하는 패션 상품을 구매할 수 있는 서비스를 제공한다.
이 논문은 한-영 대화체 번역 시스템에서 영형 대명사 해소를 위한 새로운 방법론을 제시하였다. 영형 대명사는 문맥, 상황, 세상 지식으로부터 추론될 수 있는 문장에서 생략된 요소이다. 이 논문은 특히 주어-대명사 생략 현상에 대해 다루고 있는데, 그 이유는 드라마 대본이나 인스턴트 메신저 채팅과 같은 한국어 대화체에서는 매우 일반적인 현상이기 때문이다. 이 논문에서 우리는 많은 양의 지식을 요구하지 않는 간단한 방법론을 제시하였다. 평가결과 우리의 방법은 0.79의 F-measure 스코어를 달성하였고, 전체번역률의 측면에서는 약 4.1% 정도의 향상효과가 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.