• Title/Summary/Keyword: F-GCRA

Search Result 3, Processing Time 0.021 seconds

Performance of GFR service for TCP traffic in ATM switches with FIFO shared buffer (FIFO 공유 버퍼를 갖는 ATM 스위치에서 TCP 트래픽을 위한 GFR 성능 평가)

  • Park Inyong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.1
    • /
    • pp.49-57
    • /
    • 2005
  • ATM Form has defined the guaranteed frame rate (GFR) service to provide minimum cell rate (MCR) guarantees for TCP traffic in ATM networks and allow it to fairly share residual bandwidth. GFR switch implementation consists of the frame-based generic cell rate algorithm (F-GCRA) and a frame forwarding mechanism. The F-GCRA identifies frames that are eligible for an MCR guarantee. The frame forwarding mechanism buffers cells at a frame unit according to information provided by the F-GCRA and forwards the buffered cells to an output port according to its scheduling discipline. A simple GFR mechanism with shared buffer with a global threshold is a feasible implementation mechanism, but has been known that it is insufficient to guarantee the MCR. This paper has estimated performance of GFR service for TCP traffic over ATM switches with the simple FIFO-based mechanism

  • PDF

Improvement of F-GCRA Algorithm for ATM-GFR Service (ATM-GFR 서비스를 위한 F-GCRA 알고리즘 개선)

  • Park, In-Yong
    • The KIPS Transactions:PartC
    • /
    • v.13C no.7 s.110
    • /
    • pp.889-896
    • /
    • 2006
  • ATM Forum has defined a guaranteed frame rate (GFR) service to serve Internet traffic efficiently. The GFR service provides virtual connections (VCs) for minimum cell rate (MCR) guarantees and allows them to fairly share the residual bandwidth. And ATM Forum has recommended a frame-based generic cell rate algorithm (F-GCRA) as a frame classifier, which determines whether an Am cell is eligible to use the guaranteed bandwidth in a frame level. An ATM switch accommodates cells in its buffer or drops them in a frame level according to current buffer occupancy. A FIFO shared buffer has so simple structure as to be feasibly implemented in switches, but has not been able to provide an MCR guarantee for each VC without buffer management based on per-VC accounting. In this paper, we enhance the F-GCRA frame classifier to guarantee an MCR of each VC without buffer management based on per-VC accounting. The enhanced frame classifier considers burstness of TCP traffic caused by congestion control algorithm so as to enable each VC to use its reserved bandwidth sufficiently. In addition, it is able to alleviate the unfairness problem in usage of the residual bandwidth. Simulation results show that the enhanced frame classifier satisfies quality of services (QoSs) of the GFR service for the TCP traffic.

A Study to Guarantee Minimum Bandwidth to TCP Traffic over ATM-GFR Service (ATM-GFR 서비스에서 TCP 트래픽의 최소 대역폭 보장에 관한 연구)

  • 박인용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4C
    • /
    • pp.308-315
    • /
    • 2002
  • Guaranteed frame rate (GFR) service has been defied to provide minimum cell rate (MCR) guarantees for virtual connections (VCs) carrying Internet traffic in ATM networks and allow them to fairly share residual bandwidth. The simplest switch implementation mechanism to support the GFR service in ATM networks consists of the frame-based generic cell rate algorithm (F-GCRA) frame classifier and the early packet discard (EPD)-like buffer acceptance algorithm in a single FIFO buffer. This mechanism is simple, but has foiled to guarantee the same bandwidth as an MCR to a VC that has reserved a relatively large MCR. This paper applies the packet spacing scheme to TCP traffic to alleviate its burstness, so as to guarantee a larger MCR to a VC. In addition, the random early detection (RED) scheme is added to the buffer acceptance algorithm in order to improve fairness in use of residual bandwidth. Simulation results show that the applied two schemes improve a quality of service (QoS) in the GFR service for the TCP traffic.